Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2217363120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37379326

RESUMEN

Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.

2.
Small ; 20(15): e2306832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009745

RESUMEN

Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm-1 can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than Li6PS5Cl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.

3.
Angew Chem Int Ed Engl ; : e202404874, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709977

RESUMEN

The development of improved solid electrolytes (SEs) plays a crucial role in the advancement of bulk-type solid-state battery (SSB) technologies. In recent years, multicomponent or high-entropy SEs are gaining increased attention for their advantageous charge-transport and (electro)chemical properties. However, a comprehensive understanding of how configurational entropy affects ionic conductivity is largely lacking. Herein we investigate a series of multication-substituted lithium argyrodites with the general formula Li6+x[M1aM2bM3cM4d]S5I, with M being P, Si, Ge, and Sb. Structure-property relationships related to ion mobility are probed using a combination of diffraction techniques, solid-state nuclear magnetic resonance spectroscopy, and charge-transport measurements. We present, to the best of our knowledge, the first experimental evidence of a direct correlation between occupational disorder in the cationic host lattice and lithium transport. By controlling the configurational entropy through compositional design, high bulk ionic conductivities up to 18 mS cm-1 at room temperature are achieved for optimized lithium argyrodites. Our results indicate the possibility of improving ionic conductivity in ceramic ion conductors via entropy engineering, overcoming compositional limitations for the design of advanced electrolytes and opening up new avenues in the field.

4.
Angew Chem Int Ed Engl ; 62(50): e202314155, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902614

RESUMEN

Superionic solid electrolytes (SEs) are essential for bulk-type solid-state battery (SSB) applications. Multicomponent SEs are recently attracting attention for their favorable charge-transport properties, however a thorough understanding of how configurational entropy (ΔSconf ) affects ionic conductivity is lacking. Here, we successfully synthesized a series of halogen-rich lithium argyrodites with the general formula Li5.5 PS4.5 Clx Br1.5-x (0≤x≤1.5). Using neutron powder diffraction and 31 P magic-angle spinning nuclear magnetic resonance spectroscopy, the S2- /Cl- /Br- occupancy on the anion sublattice was quantitatively analyzed. We show that disorder positively affects Li-ion dynamics, leading to a room-temperature ionic conductivity of 22.7 mS cm-1 (9.6 mS cm-1 in cold-pressed state) for Li5.5 PS4.5 Cl0.8 Br0.7 (ΔSconf =1.98R). To the best of our knowledge, this is the first experimental evidence that configurational entropy of the anion sublattice correlates with ion mobility. Our results indicate the possibility of improving ionic conductivity in ceramic ion conductors by tailoring the degree of compositional complexity. Moreover, the Li5.5 PS4.5 Cl0.8 Br0.7 SE allowed for stable cycling of single-crystal LiNi0.9 Co0.06 Mn0.04 O2 (s-NCM90) composite cathodes in SSB cells, emphasizing that dual-substituted lithium argyrodites hold great promise in enabling high-performance electrochemical energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA