Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gastroenterology ; 151(5): 1011-1024.e7, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27506299

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) metastasizes to liver at early stages, making this disease highly lethal. Tissue inhibitor of metalloproteinases-1 (TIMP1) creates a metastasis-susceptible environment in the liver. We investigated the role of TIMP1 and its receptor CD63 in metastasis of early-stage pancreatic tumors using mice and human cell lines and tissue samples. METHODS: We obtained liver and plasma samples from patients in Germany with chronic pancreatitis, pancreatic intra-epithelial neoplasia, or PDAC, as well as hepatic stellate cells (HSCs). We performed studies with Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (CPK) mice, Pdx-1+/Cre;Kras+/LSL-G12D;Trp53+/LSL-R172H (KPC) mice, and their respective healthy littermates as control, and Cd63-/- mice with their wild-type littermates. KPC mice were bred with Timp1-/- mice to produce KPCxTimp1-/- mice. TIMP1 was overexpressed and CD63 was knocked down in mice using adenoviral vectors AdTIMP1 or AdshCD63, respectively. Hepatic susceptibility to metastases was determined after intravenous inoculation of syngeneic 9801L pancreas carcinoma cells. Pancreata and liver tissues were collected and analyzed by histology, immunohistochemical, immunoblot, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction analyses. We analyzed the effects of TIMP1 overexpression or knockdown and CD63 knockdown in transduced human primary HSCs and HSC cell lines. RESULTS: Chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients expressed higher levels of TIMP1 protein than normal pancreas. The premalignant pancreatic lesions that developed in KPC and CPK mice expressed TIMP1 and secreted it into the circulation. In vitro and in vivo, TIMP1 activated human or mouse HSCs, which required interaction between TIMP1 and CD63 and signaling via phosphatidylinositol 3-kinase, but not TIMP1 protease inhibitor activity. This signaling pathway induced expression of endogenous TIMP1. TIMP1 knockdown in HSCs reduced their activation. Cultured TIMP1-activated human and mouse HSCs began to express stromal-derived factor-1, which induced neutrophil migration, a marker of the premetastatic niche. Mice with pancreatic intra-epithelial neoplasia-derived systemic increases in TIMP1 developed more liver metastases after injections of pancreatic cancer cells than mice without increased levels of TIMP1. This increase in formation of liver metastases from injected pancreatic cancer cells was not observed in TIMP1 or CD63 knockout mice. CONCLUSIONS: Expression of TIMP1 is increased in chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients. TIMP1 signaling via CD63 leads to activation of HSCs, which create an environment in the liver that increases its susceptibility to pancreatic tumor cells. Strategies to block TIMP1 signaling via CD63 might be developed to prevent PDAC metastasis to the liver.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/metabolismo , Lesiones Precancerosas/metabolismo , Tetraspanina 30/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Metástasis de la Neoplasia , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Lesiones Precancerosas/patología , Transducción de Señal , Microambiente Tumoral
2.
Hepatology ; 61(1): 238-48, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25131778

RESUMEN

UNLABELLED: Due to its ability to inhibit prometastatic matrix metalloproteinases, tissue inhibitor of metalloproteinases (TIMP)-1 has been thought to suppress tumor metastasis. However, elevated systemic levels of TIMP-1 correlate with poor prognosis in cancer patients, suggesting a metastasis-stimulating role of TIMP-1. In colorectal cancer patients, tumor as well as plasma TIMP-1 levels were correlated with synchronous liver metastasis or distant metastasis-associated disease relapse. In mice, high systemic TIMP-1 levels increased the liver susceptibility towards metastasis by triggering the formation of a premetastatic niche. This promoted hepatic metastasis independent of origin or intrinsic metastatic potential of tumor cells. High systemic TIMP-1 led to increased hepatic SDF-1 levels, which in turn promoted recruitment of neutrophils to the liver. Both inhibition of SDF-1-mediated neutrophil recruitment and systemic depletion of neutrophils reduced TIMP-1-induced increased liver susceptibility towards metastasis. This indicates a crucial functional role of neutrophils in the TIMP-1-induced premetastatic niche. CONCLUSION: Our results identify TIMP-1 as an essential promoter of hepatic premetastatic niche formation.


Asunto(s)
Carcinoma/secundario , Quimiocina CXCL12/metabolismo , Neoplasias Hepáticas/secundario , Infiltración Neutrófila , Receptores CXCR4/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Carcinoma/sangre , Línea Celular Tumoral , Humanos , Hígado/inmunología , Hígado/metabolismo , Neoplasias Hepáticas/sangre , Ratones , Ratones Endogámicos , Células 3T3 NIH , Inhibidor Tisular de Metaloproteinasa-1/sangre
3.
J Biol Chem ; 285(34): 26182-9, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20566631

RESUMEN

During tumor progression, malignant cells must repeatedly survive microenvironmental stress. Hypoxia-inducible factor-1 (HIF-1) signaling has emerged as one major pathway allowing cellular adaptation to stress. Recent findings led to the hypothesis that HIF-1alpha may enhance the metastatic potential of tumor cells by a survival-independent mechanism. So far it has not been shown that HIF-1alpha also directly regulates invasive processes during metastasis in addition to conferring a survival advantage to metastasizing tumor cells. In a hypoxia-tolerant tumor cell line (L-CI.5s), which did not rely on HIF-1 signaling for viability in vitro and in vivo, knockdown of Hif-1alpha reduced invasiveness of the tumor cells in vitro as well as extravasation and secondary infiltration in vivo. Liver metastases associated induction of proinvasive receptor tyrosine kinase Met phosphorylation as well as gelatinolytic activity were Hif-1alpha-dependent. Indeed, promoter activity of the matrix metalloproteinase-9 (mmp-9) was shown to be Hif-1alpha-dependent. This study uncovers a new survival-independent biological function of HIF-1alpha contributing to the efficacy of metastases formation.


Asunto(s)
Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Metástasis de la Neoplasia/patología , Animales , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/secundario , Metaloproteinasa 9 de la Matriz/genética , Ratones , Proteínas Tirosina Quinasas Receptoras/metabolismo
4.
Mol Cancer Res ; 6(3): 341-51, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18337444

RESUMEN

The specific spatiotemporal role of the matrix metalloproteinase 2 (MMP-2) and MMP-9 (gelatinase) during metastasis is still under debate. Host cells have been described as major contributors to these MMPs during metastasis. Here, we show strong overexpression of MMP-2 and MMP-9 by tumor cells of clinical liver specimen of recurrent metachronous metastases, leading us to address the importance of tumor cell-derived MMP-2 or MMP-9 during liver metastasis. Thus far, distinction of their roles was impossible due to lack of inhibitors which can act exclusively on tumor cells or distinguish MMP-2 from MMP-9. We therefore used short hairpin RNA interference technology in the well-established syngeneic L-CI.5s lymphoma model, in which we could analyze the time course of experimental liver colonization (arrest/invasion of single tumor cells, outgrowth, and invasion within the parenchyma) in immunocompetent mice and correlate these steps with MMP-2 or MMP-9 expression levels. In parental tumor cells, MMP-9 expression closely correlated with the invasive phases of liver colonization, whereas MMP-2 expression remained unaltered. Specific knockdown of MMP-9 revealed a close correlation between invasion-dependent events and tumor cell-derived MMP-9 expression. In contrast, knockdown of MMP-2 did not significantly alter the metastatic potential of the cells but led to a marked inhibition of metastatic foci growth. These findings explain the efficacy of gelatinase-specific synthetic inhibitors on invasion and growth of tumor cells and attribute distinct functions of MMP-2 and MMP-9 to aspects of liver metastasis.


Asunto(s)
Gelatinasas/metabolismo , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metástasis de la Neoplasia/patología , Células 3T3 , Animales , Línea Celular , Cartilla de ADN , Gelatinasas/genética , Humanos , Riñón , Neoplasias Hepáticas/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia/genética , ARN Neoplásico/genética , Recurrencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Mol Cancer Res ; 14(11): 1147-1158, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27489361

RESUMEN

Matrix metalloproteinase 9 (MMP-9/Gelatinase B) is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and plays a central role in tumor cell invasion and metastasis. Here we complemented mechanistic insights in the cancer biology of MMP-9 and investigated the effects of specific long-term loss-of-function, by genetic ablation, of MMP-9 on PDAC initiation and progression in the well-established KPC mouse model of spontaneous PDAC. Tumor growth and progression were analyzed by histopathology and IHC. Invasive growth of PDAC cells was analyzed by both in vitro (proliferation, survival, migration, invasion assays) and in vivo (experimental metastasis assays) methods. Retroviral shRNAi was used to knockdown target genes (MMP-9, IL6R). Gene expression was analyzed by qRT-PCR, immunoblot, ELISA, in situ hybridization, and zymography. PDAC tumors from MMP-9-deficient mice were dramatically larger, more invasive, and contained more stroma. Yet, ablation of MMP-9 in PDAC cells did not directly promote invasive growth. Interestingly, systemic ablation of MMP-9 led to increased IL6 levels resulting from abrogation of MMP-9-dependent SCF signaling in the bone marrow. IL6 levels in MMP-9-/- mice were sufficient to induce invasive growth and STAT3 activation in PDAC cells via IL6 receptor (IL6R). Interference with IL6R blocked the increased invasion and metastasis of PDAC cells in MMP-9-deficient hosts. In conclusion, ablation of systemic MMP-9 initiated fatal communication between maintenance of physiological functions of MMP-9 in the bone marrow and invasive growth of PDAC via the IL6/IL6R/STAT3 axis. IMPLICATIONS: Thus, the beneficial effects of host MMP-9 on PDAC are an important caveat for the use of systemic MMP-9 inhibitors in cancer. Mol Cancer Res; 14(11); 1147-58. ©2016 AACR.


Asunto(s)
Médula Ósea/metabolismo , Carcinoma Ductal Pancreático/patología , Interleucina-6/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Experimentales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
6.
Clin Exp Metastasis ; 31(1): 87-100, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24002299

RESUMEN

Expression of the L1 cell adhesion molecule (L1CAM) is frequently increased in cancer patients compared to healthy individuals and also linked with bad prognosis of solid tumours. Previously, we could show that full-length L1CAM promotes metastasis formation via up-regulation of gelatinolytic activity in fibrosarcoma. In this study, we aimed to extend this finding to haematogenous malignancies and carcinomas, and to specifically elucidate the impact of L1CAM on major steps of the metastatic cascade. In a well-established T-cell lymphoma spontaneous metastasis model, silencing of L1CAM significantly improved survival of the mice, while intradermal tumour growth remained unaltered. This correlated with significantly decreased spontaneous metastasis formation. L1CAM suppression abrogated the metastatic potential of T-cell lymphoma as well as carcinoma cells as demonstrated by reduced migration and invasion in vitro and reduced formation of experimental metastasis in vivo. At the molecular level, silencing of L1CAM led to reduced expression of gelatinases MMP-2 and -9 in vitro and decreased gelatinolytic activity in primary tumours and metastases in vivo. In accordance, knock down of L1CAM had similar suppressive effects on migration, invasion and in vivo-gelatinolytic activity as treatment with the specific gelatinase inhibitor SB-3CT. This newly discovered impact of L1CAM on distinct steps of the metastatic cascade and MMP activity highlights the potential of possible L1CAM-directed therapies to inhibit metastatic spread.


Asunto(s)
Invasividad Neoplásica/fisiopatología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Animales , Western Blotting , Citometría de Flujo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Metástasis de la Neoplasia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Clin Exp Metastasis ; 28(8): 793-802, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21789719

RESUMEN

In many different tumor entities, increased expression of tissue inhibitor of metalloproteinases-1 (Timp-1) is associated with poor prognosis. We previously reported in mouse models that elevated systemic levels of Timp-1 induce a gene expression signature in the liver microenvironment increasing the susceptibility of this organ to tumor cells. This host effect was dependent on increased activity of the hepatocyte growth factor (Hgf)/hepatocyte growth factor receptor (Met) signaling pathway. In a recent study we showed that Met signaling is regulated by Timp-1 as it inhibits the Met sheddase A disintegrin and metalloproteinase-10 (Adam-10). The aim of the present study was to elucidate whether the metastatic potential of tumor cells benefits from autocrine Timp-1 as well and involves Adam-10 and Met signaling. In a syngeneic murine model of experimental liver metastasis Timp-1 expression and Met signaling were localized within metastatic colonies and expressed by tumor cells. Knock down of tumor cell Timp-1 suppressed Met signaling in metastases and inhibited metastasis formation and tumor cell-scattering in the liver. In vitro, knock down of tumor cell Timp-1 prevented Hgf-induced Met phosphorylation. Consequently, knock down of Met sheddase Adam-10 triggered auto-phosphorylation and responsiveness to Hgf. Accordingly, Adam-10 knock down increased Met phosphorylation in metastatic foci and induced tumor cell scattering into the surrounding liver parenchyma. In conclusion, these findings show that tumor cell-derived Timp-1 acts as a positive regulator of the metastatic potential and support the concept that proteases and their natural inhibitors, as members of the protease web, are major players of signaling during normal homeostasis and disease.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neoplasias Hepáticas Experimentales/secundario , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Microambiente Tumoral , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Riñón/citología , Riñón/metabolismo , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos DBA , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Tasa de Supervivencia , Inhibidor Tisular de Metaloproteinasa-1/antagonistas & inhibidores , Inhibidor Tisular de Metaloproteinasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA