Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(4): 845-57, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957688

RESUMEN

Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/ultraestructura , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , ARN de Transferencia/química , Alineación de Secuencia , Termodinámica
2.
Proc Natl Acad Sci U S A ; 119(32): e2122037119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914163

RESUMEN

Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered ß-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.


Asunto(s)
Proteína 2 Modificadora de la Actividad de Receptores , Receptor de Hormona Paratiroídea Tipo 1 , Transducción de Señal , Técnicas Biosensibles , Ligandos , Hormona Paratiroidea/metabolismo , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Arrestina beta 2/metabolismo
3.
Rheumatology (Oxford) ; 62(6): 2284-2293, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227102

RESUMEN

OBJECTIVES: Scleroderma renal crisis (SRC) is a rare vascular complication of systemic sclerosis with substantial risks for end-stage renal disease and premature death. Activating autoantibodies (Abs) targeting the angiotensin II type 1 (AT1R) and the endothelin-1 type A receptor (ETAR) have been identified as predictors for SRC. Here, we sought to determine their pathogenic significance for acute renal vascular injury potentially triggering kidney failure and malignant hypertension. METHODS: IgG from patients with SRC was studied for AT1R and ETAR dependent biologic effects on isolated rat renal interlobar arteries and vascular cells including contraction, signalling and mechanisms of receptor activation. RESULTS: In myography experiments, patient IgG exerted vasoconstriction sensitive to inhibition of AT1R and ETAR. This relied on MEK-ERK signalling indicating functional relevance of anti-AT1R and anti-ETAR Abs. The contractile response to angiotensin II and endothelin-1 was amplified by patient IgG containing anti-AT1R and anti-ETAR Abs with substantial crosstalk between both receptors implicating autoimmune receptor hypersensitization. Co-immunoprecipitation experiments indicated heterodimerization between both receptor types which may enable the observed functional interrelation by direct structural interactions. CONCLUSION: We provide experimental evidence that agonistic Abs may contribute to SRC. This effect is presumably related to direct receptor stimulation and additional allosteric effects, at least in heterodimeric receptor constellations. Novel therapies targeted at autoimmune hyperactivation of AT1R and ETAR might improve outcomes in severe cases of SRC.


Asunto(s)
Lesión Renal Aguda , Esclerodermia Localizada , Lesiones del Sistema Vascular , Ratas , Animales , Angiotensina II , Endotelina-1 , Autoanticuerpos , Receptor de Endotelina A , Inmunoglobulina G
4.
Pharmacol Res ; 197: 106971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032292

RESUMEN

The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.


Asunto(s)
Evolución Biológica , Transducción de Señal , Sitios de Unión , Dominios Proteicos
5.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894796

RESUMEN

G protein-coupled receptor 83 (GPR83) is a class A G protein-coupled receptor with predominant expression in the cerebellum and proposed function in the regulation of food intake and in anxiety-like behavior. The neuropeptide PEN has been suggested as a specific GPR83 ligand. However, conflicting reports exist about whether PEN is indeed able to bind and activate GPR83. This study was initiated to evaluate PEN as a potential ligand of GPR83. Employing several second messenger and other GPCR activation assays as well as a radioligand binding assay, and using multiple GPR83 plasmids and PEN peptides from different sources, no experimental evidence was found to support a role of PEN as a GPR83 ligand.


Asunto(s)
Neuropéptidos , Transducción de Señal , Ligandos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neuropéptidos/metabolismo , Péptidos
6.
Phys Chem Chem Phys ; 24(19): 11967-11978, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35527718

RESUMEN

Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.


Asunto(s)
Fitocromo , Bacterias/metabolismo , Proteínas Bacterianas/química , Fitocromo/química , Protones
7.
Proc Natl Acad Sci U S A ; 116(37): 18473-18478, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451650

RESUMEN

The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (1012) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation in rhodopsin (Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.


Asunto(s)
Adaptación Biológica/genética , Evolución Molecular , Proteínas de Peces/genética , Peces/genética , Rodopsina/genética , Sustitución de Aminoácidos , Animales , Sitios Genéticos/genética , Fenilalanina/genética , Conformación Proteica en Hélice alfa/genética , Selección Genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tirosina/genética , Visión Ocular/genética , Secuenciación Completa del Genoma
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409344

RESUMEN

The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.


Asunto(s)
Anticuerpos , Receptor de Angiotensina Tipo 1 , Alanina , Angiotensina II , Anticuerpos/farmacología , Proliferación Celular , Células HEK293 , Humanos , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo
9.
Biochemistry ; 60(40): 2967-2977, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570488

RESUMEN

Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by para-cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.


Asunto(s)
Proteínas Bacterianas/química , Fitocromo/química , Agrobacterium/química , Alanina/análogos & derivados , Alanina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Sitios de Unión , Luz , Simulación de Dinámica Molecular , Mutación , Nitrilos/química , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo/efectos de la radiación , Conformación Proteica/efectos de la radiación , Electricidad Estática , Estereoisomerismo , Tetrapirroles/química , Tetrapirroles/metabolismo
10.
FASEB J ; 34(8): 11243-11256, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32648604

RESUMEN

In contrast to most rhodopsin-like G protein-coupled receptors, the glycoprotein hormone receptors (GPHR) have a large extracellular N-terminus for hormone binding. The hormones do not directly activate the transmembrane domain but mediate their action via a, thus, far only partially known Tethered Agonistic LIgand (TALI). The existence of such an intramolecular agonist was initially indicated by site-directed mutation studies and activating peptides derived from the extracellular hinge region. It is still unknown precisely how TALI is involved in intramolecular signal transmission. We combined systematic mutagenesis studies at the luteinizing hormone receptor and the thyroid-stimulating hormone receptor (TSHR), stimulation with a drug-like agonist (E2) of the TSHR, and structural homology modeling to unravel the functional and structural properties defining the TALI region. Here, we report that TALI (a) is predisposed to constitutively activate GPHR, (b) can by itself rearrange GPHR into a fully active conformation, (c) stabilizes active GPHR conformation, and (d) is not involved in activation of the TSHR by E2. In the active state conformation, TALI forms specific interactions between the N-terminus and the transmembrane domain. We show that stabilization of an active state is dependent on TALI, including activation by hormones and constitutively activating mutations.


Asunto(s)
Glicoproteínas/metabolismo , Hormonas/metabolismo , Glicoproteínas/genética , Células HEK293 , Hormonas/genética , Humanos , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis/genética , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Péptidos/genética , Péptidos/metabolismo , Unión Proteica/genética , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Transducción de Señal/genética
11.
Phys Chem Chem Phys ; 23(33): 18197-18205, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612283

RESUMEN

Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.


Asunto(s)
Agrobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Luz , Fitocromo/metabolismo , Temperatura , Tetrapirroles/metabolismo , Agrobacterium/química , Proteínas Bacterianas/química , Fitocromo/química , Tetrapirroles/química
12.
Curr Microbiol ; 78(7): 2708-2719, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023916

RESUMEN

The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1- and agp2- knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.


Asunto(s)
Fitocromo , Agrobacterium/genética , Proteínas Bacterianas/genética , Luz , Fitocromo/genética , Proteómica
13.
Proc Natl Acad Sci U S A ; 115(10): E2229-E2237, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463722

RESUMEN

[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Cupriavidus necator/enzimología , Hidrogenasas/química , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Membrana Celular/química , Membrana Celular/genética , Cristalografía por Rayos X , Cupriavidus necator/química , Cupriavidus necator/genética , Hidrogenasas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Oxígeno/química
14.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502223

RESUMEN

In this study, we used the zebrafish animal model to establish a bioassay by which physiological efficacy differential of alpha-melanocyte-stimulating hormone (α-MSH) analogues could be measured by melanosome dispersion in zebrafish larvae. Brain-skin connection research has purported the interconnectedness between the nervous system and skin physiology. Accordingly, the neuropeptide α-MSH is a key regulator in several physiological processes, such as skin pigmentation in fish. In mammals, α-MSH has been found to regulate motivated behavior, appetite, and emotion, including stimulation of satiety and anxiety. Several clinical and animal model studies of autism spectrum disorder (ASD) have already demonstrated the effectiveness of α-MSH in restoring the social deficits of autism. Therefore, we sought to analyze the effect of synthetic and naturally-occurring α-MSH variants amongst different species. Our results showed that unique α-MSH derivatives from several fish species produced differential effects on the degree of melanophore dispersion. Using α-MSH human form as a standard, we could identify derivatives that induced greater physiological effects; particularly, the synthetic analogue melanotan-II (MT-II) exhibited a higher capacity for melanophore dispersion than human α-MSH. This was consistent with previous findings in an ASD mouse model demonstrating the effectiveness of MT-II in improving ASD behavioral symptoms. Thus, the melanophore assay may serve as a useful screening tool for therapeutic candidates for novel drug discovery.


Asunto(s)
Larva/efectos de los fármacos , Melanóforos/efectos de los fármacos , Péptidos Cíclicos/farmacología , Pigmentación de la Piel , alfa-MSH/análogos & derivados , alfa-MSH/farmacología , Secuencia de Aminoácidos , Animales , Bioensayo , Humanos , Larva/crecimiento & desarrollo , Melanóforos/citología , Homología de Secuencia , Pez Cebra , alfa-MSH/química
15.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008670

RESUMEN

Scleroderma renal crisis (SRC) is an acute life-threatening manifestation of systemic sclerosis (SSc) caused by obliterative vasculopathy and thrombotic microangiopathy. Evidence suggests a pathogenic role of immunoglobulin G (IgG) targeting G-protein coupled receptors (GPCR). We therefore dissected SRC-associated vascular obliteration and investigated the specific effects of patient-derived IgG directed against angiotensin II type 1 (AT1R) and endothelin-1 type A receptors (ETAR) on downstream signaling events and endothelial cell proliferation. SRC-IgG triggered endothelial cell proliferation via activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent activation of the E26 transformation-specific-1 transcription factor (Ets-1). Either AT1R or ETAR receptor inhibitors/shRNA abrogated endothelial proliferation, confirming receptor activation and Ets-1 signaling involvement. Binding of Ets-1 to the tissue factor (TF) promoter exclusively induced TF. In addition, TF inhibition prevented endothelial cell proliferation. Thus, our data revealed a thus far unknown link between SRC-IgG-induced intracellular signaling, endothelial cell proliferation and active coagulation in the context of obliterative vasculopathy and SRC. Patients' autoantibodies and their molecular effectors represent new therapeutic targets to address severe vascular complications in SSc.


Asunto(s)
Autoanticuerpos/farmacología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Endotelina A/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Inmunoglobulina G/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Tromboplastina/metabolismo
16.
Biochemistry ; 59(9): 1023-1037, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32073262

RESUMEN

Phytochromes are biological photoswitches that interconvert between two parent states (Pr and Pfr). The transformation is initiated by photoisomerization of the tetrapyrrole chromophore, followed by a sequence of chromophore and protein structural changes. In the last step, a phytochrome-specific peptide segment (tongue) undergoes a secondary structure change, which in prokaryotic phytochromes is associated with the (de)activation of the output module. The focus of this work is the Pfr-to-Pr photoconversion of the bathy bacteriophytochrome Agp2 in which Pfr is the thermodynamically stable state. Using spectroscopic techniques, we studied the structural and functional consequences of substituting Arg211, Tyr165, His278, and Phe192 close to the biliverdin (BV) chromophore. In Pfr, substitutions of these residues do not affect the BV structure. The characteristic Pfr properties of bathy phytochromes, including the protonated propionic side chain of ring C (propC) of BV, are preserved. However, replacing Arg211 or Tyr165 blocks the photoconversion in the Meta-F state, prior to the secondary structure transition of the tongue and without deprotonation of propC. The Meta-F state of these variants displays low photochemical activity, but electronic excitation causes ultrafast alterations of the hydrogen bond network surrounding the chromophore. In all variants studied here, thermal back conversion from the photoproducts to Pfr is decelerated but substitution of His278 or Phe192 is not critical for the Pfr-to-Pr photoconversion. These variants do not impair deprotonation of propC or the α-helix/ß-sheet transformation of the tongue during the Meta-F-to-Pr decay. Thus, we conclude that propC deprotonation is essential for restructuring of the tongue.


Asunto(s)
Biliverdina/metabolismo , Fitocromo/química , Fitocromo/ultraestructura , Agrobacterium tumefaciens , Proteínas Bacterianas/química , Enlace de Hidrógeno , Luz , Fitocromo/fisiología , Protones , Espectrometría Raman/métodos , Tetrapirroles/química , Tetrapirroles/metabolismo
17.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785054

RESUMEN

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.


Asunto(s)
Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/genética , Proteína Relacionada con Agouti/química , Proteína Relacionada con Agouti/farmacología , Secuencia de Aminoácidos , Animales , Arrestinas/metabolismo , Sitios de Unión , Humanos , Ligandos , Mutación con Pérdida de Función , Obesidad/genética , Unión Proteica , Conformación Proteica , Proteínas Modificadoras de la Actividad de Receptores/química , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptor de Melanocortina Tipo 4/antagonistas & inhibidores , Receptor de Melanocortina Tipo 4/genética , alfa-MSH/química , alfa-MSH/farmacología
18.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059383

RESUMEN

The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and ß-arrestin2 recruitment, using the two endogenous agonists, α- and ß-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.


Asunto(s)
Mutación , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Leptina/metabolismo , Ligandos , Melanocortinas/metabolismo , Modelos Teóricos , Obesidad/genética , Fosforilación , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/metabolismo
19.
Biochemistry ; 58(33): 3504-3519, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31348653

RESUMEN

Bacteriophytochromes harboring a biliverdin IXα (BV) chromophore undergo photoinduced reaction cascades to switch between physiologically inactive and active states. Employing vibrational spectroscopic and computational methods, we analyzed the role of propionic substituents of BV in the transformations between parent states Pr and Pfr in prototypical (Agp1) and bathy (Agp2) phytochromes from Agrobacterium fabrum. Both proteins form adducts with BV monoesters (BVM), esterified at propionic side chain B (PsB) or C (PsC), but in each case, only one monoester adduct is reactive. In the reactive Agp2-BVM-B complex (esterified at ring B), the Pfr dark state displays the structural properties characteristic of bathy phytochromes, including a protonated PsC. As in native Agp2, PsC is deprotonated in the final step of the Pfr phototransformation. However, the concomitant α-helix/ß-sheet secondary structure change of the tongue is blocked at the stage of unfolding of the coiled loop region. This finding and the shift of the tautomeric equilibrium of BVM toward the enol form are attributed to the drastic changes in the electrostatic potential. The calculations further suggest that deprotonation of PsC and the protonation state of His278 control the reactivity of the enol tautomer, thereby accounting for the extraordinarily slow thermal reversion. Although strong perturbations of the electrostatic potential are also found for Agp1-BVM, the consequences for the Pr-to-Pfr phototransformation are less severe. Specifically, the structural transition of the tongue is not impaired and thermal reversion is even accelerated. The different response of Agp1 and Agp2 to monoesterification of BV points to different photoconversion mechanisms.


Asunto(s)
Agrobacterium/metabolismo , Modelos Moleculares , Fitocromo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biliverdina , Biología Computacional , Fitocromo/química , Conformación Proteica , Electricidad Estática
20.
J Biol Chem ; 293(12): 4403-4410, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29363577

RESUMEN

Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (Gt) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the Gt α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, Gt α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Rodopsina/química , Rodopsina/metabolismo , Cristalografía por Rayos X , Humanos , Fosforilación , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA