Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Osteoporos Rep ; 21(5): 503-518, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578676

RESUMEN

PURPOSE OF REVIEW: This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS: The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.


Asunto(s)
Huesos , Sistema Nervioso Periférico , Humanos
2.
PLoS Genet ; 15(6): e1008244, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31233501

RESUMEN

Berardinelli-Seip congenital generalized lipodystrophy is associated with increased bone mass suggesting that fat tissue regulates the skeleton. Because there is little mechanistic information regarding this issue, we generated "fat-free" (FF) mice completely lacking visible visceral, subcutaneous and brown fat. Due to robust osteoblastic activity, trabecular and cortical bone volume is markedly enhanced in these animals. FF mice, like Berardinelli-Seip patients, are diabetic but normalization of glucose tolerance and significant reduction in circulating insulin fails to alter their skeletal phenotype. Importantly, the skeletal phenotype of FF mice is completely rescued by transplantation of adipocyte precursors or white or brown fat depots, indicating that adipocyte derived products regulate bone mass. Confirming such is the case, transplantation of fat derived from adiponectin and leptin double knockout mice, unlike that obtained from their WT counterparts, fails to normalize FF bone. These observations suggest a paucity of leptin and adiponectin may contribute to the increased bone mass of Berardinelli-Seip patients.


Asunto(s)
Adiponectina/genética , Leptina/genética , Lipodistrofia Generalizada Congénita/genética , Osteosclerosis/genética , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Densidad Ósea/genética , Modelos Animales de Enfermedad , Femenino , Glucosa/genética , Glucosa/metabolismo , Humanos , Insulina/genética , Grasa Intraabdominal/metabolismo , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/patología , Ratones , Ratones Noqueados , Osteosclerosis/etiología , Osteosclerosis/metabolismo , Osteosclerosis/patología , Esqueleto/metabolismo , Esqueleto/patología , Grasa Subcutánea/metabolismo
3.
Curr Osteoporos Rep ; 17(5): 256-269, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31392667

RESUMEN

PURPOSE OF REVIEW: The goal of this review is to explore clinical associations between peripheral neuropathy and diabetic bone disease and to discuss how nerve dysfunction may contribute to dysregulation of bone metabolism, reduced bone quality, and fracture risk. RECENT FINDINGS: Diabetic neuropathy can decrease peripheral sensation (sensory neuropathy), impair motor coordination (motor neuropathy), and increase postural hypotension (autonomic neuropathy). Together, this can impair overall balance and increase the risk for falls and fractures. In addition, the peripheral nervous system has the potential to regulate bone metabolism directly through the action of local neurotransmitters on bone cells and indirectly through neuroregulation of the skeletal vascular supply. This review critically evaluates existing evidence for diabetic peripheral neuropathy as a risk factor or direct actor on bone disease. In addition, we address therapeutic and experimental considerations to guide patient care and future research evaluating the emerging relationship between diabetic neuropathy and bone health.


Asunto(s)
Enfermedades Óseas/etiología , Neuropatías Diabéticas/complicaciones , Enfermedades del Sistema Nervioso Periférico/complicaciones , Densidad Ósea , Enfermedades Óseas/fisiopatología , Remodelación Ósea , Neuropatías Diabéticas/fisiopatología , Humanos , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Equilibrio Postural , Factores de Riesgo
4.
Calcif Tissue Int ; 100(5): 461-475, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27364342

RESUMEN

Adipocytes of the marrow adipose tissue (MAT) are distributed throughout the skeleton, are embedded in extracellular matrix, and are surrounded by cells of the hematopoietic and osteogenic lineages. MAT is a persistent component of the skeletal microenvironment and has the potential to impact local processes including bone accrual and hematopoietic function. In this review, we discuss the initial evolution of MAT in vertebrate lineages while emphasizing comparisons to the development of peripheral adipose, hematopoietic, and skeletal tissues. We then apply these evolutionary clues to define putative functions of MAT. Lastly, we explore the regulation of MAT by two major components of its microenvironment, the extracellular matrix and the nerves embedded within. The extracellular matrix and nerves contribute to both rapid and continuous modification of the MAT niche and may help to explain evolutionary conserved mechanisms underlying the coordinated regulation of blood, bone, and MAT within the skeleton.


Asunto(s)
Tejido Adiposo , Médula Ósea , Matriz Extracelular , Animales , Humanos
5.
Connect Tissue Res ; 56(2): 106-19, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25646568

RESUMEN

Advances in computed tomography (CT) imaging are opening new avenues toward more precise characterization and quantification of connective tissue microarchitecture. In the last two decades, micro-computed tomography (microCT) has significantly augmented destructive methods for the 3D micro-analysis of tissue structure, primarily in the bone research field. Recently, microCT has been employed in combination with contrast agents to generate contrast-enhanced images of soft tissues that are otherwise difficult to visualize due to their native radiodensity. More recent advances in CT technology have enabled ultra-high resolution imaging by utilizing a more powerful nano-focused X-ray source, such as that found in nano-computed tomography (nanoCT) systems. NanoCT imaging has facilitated the expansion of musculoskeletal research by reducing acquisition time and significantly expanding the range of samples that can be imaged in terms of size, age and tissue-type (bone, muscle, tendon, cartilage, vessels and adipose tissue). We present the application and early results of nanoCT imaging in various tissue types and how this ultra-high resolution imaging modality is capable of characterizing microstructures at levels of details previously not possible. Contrast-enhanced imaging techniques to enable soft-tissue visualization and characterization are also outlined.


Asunto(s)
Huesos/citología , Procesamiento de Imagen Asistido por Computador , Microtomografía por Rayos X , Animales , Cartílago , Tejido Conectivo , Humanos , Imagenología Tridimensional/métodos
6.
J Biol Chem ; 288(45): 32475-32489, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24068707

RESUMEN

G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/farmacología , Células Madre/metabolismo , Edulcorantes/efectos adversos , Células 3T3-L1 , Adipogénesis/genética , Adyuvantes Inmunológicos/farmacología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , AMP Cíclico/genética , AMP Cíclico/metabolismo , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Lipólisis/genética , Masculino , Ratones , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Edulcorantes/farmacocinética
7.
Clin Infect Dis ; 59(9): 1237-45, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24992954

RESUMEN

BACKGROUND: Voriconazole is a triazole antifungal medication used for prophylaxis or to treat invasive fungal infections. Inflammation of the periosteum resulting in skeletal pain, known as periostitis, is a reported side effect of long-term voriconazole therapy. The trifluorinated molecular structure of voriconazole suggests a possible link between excess fluoride and periostitis, as elevated blood fluoride has been reported among patients with periostitis who received voriconazole. METHODS: Two hundred sixty-four patients from Michigan were impacted by the multistate outbreak of fungal infections as a result of contaminated methylprednisolone injections. A retrospective study was conducted among 195 patients who received voriconazole therapy at St Joseph Mercy Hospital during this outbreak. Twenty-eight patients who received both bone scan and plasma fluoride measurements for skeletal pain were included in the statistical analyses. Increased tracer uptake on bone scan was considered positive for periostitis. The primary outcome measure was the correlation between plasma fluoride and bone scan results. RESULTS: Blood fluoride (P < .001), alkaline phosphatase (P = .020), daily voriconazole dose (P < .001), and cumulative voriconazole dose (P = .027) were significantly elevated in patients who had periostitis compared with those who did not. Discontinuation or dose reduction of voriconazole resulted in improvement of pain in 89% of patients. CONCLUSIONS: High plasma fluoride levels coupled with skeletal pain among patients who are on long-term voriconazole therapy is highly suggestive of periostitis. Initial measurement of fluoride may be considered when bone scan is not readily available. Early detection should be sought, as discontinuation of voriconazole is effective at reversing the disease.


Asunto(s)
Fluoruros/sangre , Dolor/etiología , Periostitis/inducido químicamente , Periostitis/epidemiología , Voriconazol/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Fosfatasa Alcalina , Contaminación de Medicamentos , Femenino , Humanos , Masculino , Metilprednisolona , Persona de Mediana Edad , Estudios Retrospectivos , Imagen de Cuerpo Entero
8.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798585

RESUMEN

Mechanical loading is required for bone health and results in skeletal adaptation to optimize strength. Local nerve axons, particularly within the periosteum, may respond to load-induced biomechanical and biochemical cues. However, their role in the bone anabolic response remains controversial. We hypothesized that spatial alignment of periosteal nerves with sites of load-induced bone formation would clarify this relationship. To achieve this, we developed RadialQuant, a custom tool for spatial histomorphometry. Tibiae of control and neurectomized (sciatic/femoral nerve cut) pan-neuronal Baf53b-tdTomato reporter mice were loaded for 5-days. Bone formation and periosteal nerve axon density were then quantified simultaneously in non-decalcified sections of the mid-diaphysis using RadialQuant. In control animals, anabolic loading induced maximal periosteal bone formation at the site of peak compression, as has been reported previously. Loading did not significantly change overall periosteal nerve density. However, a trending 28% increase in periosteal axons was noted at the site of peak compression in loaded limbs. Neurectomy depleted 88% of all periosteal axons, with near-total depletion on load-responsive surfaces. Neurectomy alone also caused de novo bone formation on the lateral aspect of the mid-diaphysis. However, neurectomy did not inhibit load-induced increases in periosteal bone area, mineralizing surface, or bone formation rate. Rather, neurectomy spatially redistributed load-induced bone formation towards the lateral tibial surface with a reduction in periosteal bone formation at the posterolateral apex (-63%) and enhancement at the lateral surface (+1360%). Altogether, this contributed to comparable load-induced changes in cortical bone area fraction (+4.4% in controls; +5.4% in neurectomized). Our results show that local skeletal innervation modulates but is not required for skeletal adaptation to applied load. This supports the continued use of loading and weight-bearing exercise as an effective strategy to increase bone mass, even in patients with peripheral nerve damage or dysfunction.

9.
JBMR Plus ; 8(7): ziae070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38868596

RESUMEN

The International Society of Bone Morphometry (ISBM) is dedicated to advancing research, education, and clinical practice for osteoporosis and other bone disorders by developing and improving tools for the quantitative imaging and analysis of bone. Its initial core mission was to promote the proper use of morphometric techniques in bone research and to educate and train clinicians and basic scientists in bone morphometry. This article chronicles the evolution of the ISBM and the history and development of bone morphometric techniques for the past 50-years, starting with workshops on bone morphometry in 1973, to the formal incorporation of the ISBM in 1996, to today. We also provide a framework and vision for the coming decades. This effort was led by ISBM presidents Dr Erica L. Scheller (2022-2024) and Dr Thomas J. Wronski (2009-2012) in collaboration with all other living ISBM presidents. Though the underlying techniques and questions have changed over time, the need for standardization of established tools and discovery of novel approaches for bone morphometry remains a constant. The ISBM fulfills this need by providing a forum for the exchange of ideas, with a philosophy that encourages the open discussion of pitfalls and challenges among clinicians, scientists, and industry partners. This facilitates the rapid development and adaptation of tools to meet emerging demands within the field of bone health at a high level.

10.
Elife ; 122024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598270

RESUMEN

Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.


Type 2 diabetes is a long-term metabolic disease characterised by chronic high blood sugar levels. This in turn has a negative impact on the health of other tissues and organs, including bones. Type 2 diabetes patients have an increased risk of fracturing bones compared to non-diabetics. This is particularly true for fragility fractures, which are fractures caused by falls from a short height (i.e., standing height or less), often affecting hips or wrists. Usually, a lower bone density is associated with higher risk of fractures. However, patients with type 2 diabetes have increased bone fragility despite normal or higher bone density. One reason for this could be the chronically high levels of blood sugar in type 2 diabetes, which alter the properties of proteins in the body. It has been shown that the excess sugar molecules effectively 'react' with many different proteins, producing harmful compounds in the process, called Advanced Glycation End-products, or AGEs. AGEs are ­ in turn ­thought to affect the structure of collagen proteins, which help hold our tissues together and decrease bone strength. However, the signalling pathways underlying this process are still unclear. To find out more, Leanza et al. studied a signalling molecule, called sclerostin, which inhibits a signalling pathway that regulates bone formation, known as Wnt signaling. The researchers compared bone samples from both diabetic and non-diabetic patients, who had undergone hip replacement surgery. Analyses of the samples, using a technique called real-time-PCR, revealed that gene expression of sclerostin was increased in samples of type 2 diabetes patients, which led to a downregulation of Wnt signaling related genes. Moreover, the downregulation of Wnt genes was correlated with lower bone strength (which was measured by compressing the bone tissue). Further biochemical analysis of the samples revealed that higher sclerostin activity was also associated with higher levels of AGEs. These results provide a clearer understanding of the biological mechanisms behind compromised bone strength in diabetes. In the future, Leanza et al. hope that this knowledge will help us develop treatments to reduce the risk of bone complications for type 2 diabetes patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Femenino , Reacción de Maillard , Vía de Señalización Wnt , Huesos , Investigadores
11.
JCI Insight ; 9(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175722

RESUMEN

Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.


Asunto(s)
Enfermedades Óseas , Diabetes Mellitus Tipo 1 , Enfermedades del Sistema Nervioso Periférico , Humanos , Masculino , Femenino , Ratones , Animales , Axones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Ratones Noqueados , Proteínas del Citoesqueleto/genética , Proteínas del Dominio Armadillo/genética
12.
Mol Metab ; 68: 101664, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586433

RESUMEN

OBJECTIVE: Obesity and nutrient oversupply increase mammalian target of rapamycin (mTOR) signaling in multiple cell types and organs, contributing to the onset of insulin resistance and complications of metabolic disease. However, it remains unclear when and where mTOR activation mediates these effects, limiting options for therapeutic intervention. The objective of this study was to isolate the role of constitutive mTOR activation in Nav1.8-expressing peripheral neurons in the onset of diet-induced obesity, bone loss, and metabolic disease. METHODS: In humans, loss of function mutations in tuberous sclerosis complex 2 (TSC2) lead to maximal constitutive activation of mTOR. To mirror this in mice, we bred Nav1.8-Cre with TSC2fl/fl animals to conditionally delete TSC2 in Nav1.8-expressing neurons. Male and female mice were studied from 4- to 34-weeks of age and a subset of animals were fed a high-fat diet (HFD) for 24-weeks. Assays of metabolism, body composition, bone morphology, and behavior were performed. RESULTS: By lineage tracing, Nav1.8-Cre targeted peripheral sensory neurons, a subpopulation of postganglionic sympathetics, and several regions of the brain. Conditional knockout of TSC2 in Nav1.8-expressing neurons (Nav1.8-TSC2KO) selectively upregulated neuronal mTORC1 signaling. Male, but not female, Nav1.8-TSC2KO mice had a 4-10% decrease in body size at baseline. When challenged with HFD, both male and female Nav1.8-TSC2KO mice resisted diet-induced gains in body mass. However, this did not protect against HFD-induced metabolic dysfunction and bone loss. In addition, despite not gaining weight, Nav1.8-TSC2KO mice fed HFD still developed high body fat, a unique phenotype previously referred to as 'normal weight obesity'. Nav1.8-TSC2KO mice also had signs of chronic itch, mild increases in anxiety-like behavior, and sex-specific alterations in HFD-induced fat distribution that led to enhanced visceral obesity in males and preferential deposition of subcutaneous fat in females. CONCLUSIONS: Knockout of TSC2 in Nav1.8+ neurons increases itch- and anxiety-like behaviors and substantially modifies fat storage and metabolic responses to HFD. Though this prevents HFD-induced weight gain, it masks depot-specific fat expansion and persistent detrimental effects on metabolic health and peripheral organs such as bone, mimicking the 'normal weight obesity' phenotype that is of growing concern. This supports a mechanism by which increased neuronal mTOR signaling can predispose to altered adipose tissue distribution, adipose tissue expansion, impaired peripheral metabolism, and detrimental changes to skeletal health with HFD - despite resistance to weight gain.


Asunto(s)
Esclerosis Tuberosa , Animales , Femenino , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Mamíferos/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Obesidad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/complicaciones , Aumento de Peso
13.
J Orthop Res ; 41(12): 2599-2609, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37203780

RESUMEN

Accumulation of adipose tissue within and outside of skeletal muscle is associated with orthopedic injury and metabolic disease, where it is thought to impede muscle function. The close juxtaposition between this adipose and myofibers has led to hypotheses that paracrine interactions between the two regulate local physiology. Recent work suggests that intramuscular adipose tissue (IMAT) may have features of beige or brown fat, indicated by the expression of uncoupling protein-1 (UCP-1). However, this is contested by other studies. Clarification of this point is needed to inform our understanding of the relationship between IMAT and muscle health. To achieve this, we examined the effects of constitutive UCP-1+ cell ablation (UCP1-DTA) on IMAT development and homeostasis. IMAT developed normally in UCP1-DTA mice, with no significant differences in quantity compared with wild-type littermates. Likewise, IMAT accumulation in response to glycerol-induced injury was similar between genotypes, with no significant differences in adipocyte size, quantity, or dispersion. This suggests that neither physiological nor pathological IMAT express UCP-1 and that the development of IMAT does not depend on UCP-1 lineage cells. In response to ß3-adrenergic stimulation, we find minor, localized UCP-1 positivity in wildtype IMAT, but the bulk of the adipocytes are unresponsive. In contrast, two depots of muscle-adjacent (epi-muscular) adipose tissue have reduced mass in UCP1-DTA mice and UCP-1 positivity in wildtype littermates, comparable to traditional beige and brown adipose depots. Taken together this evidence strongly supports a white adipose phenotype for mouse IMAT and a brown/beige phenotype for some adipose outside the muscle boundary.


Asunto(s)
Adipocitos , Tejido Adiposo , Ratones , Animales , Proteína Desacopladora 1/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Fenotipo
14.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37693376

RESUMEN

In lactating mothers, the high calcium (Ca 2+ ) demand for milk production triggers significant bone resorption. While estrogen would normally counteract excessive bone loss and maintain sufficient bone formation during this postpartum period, this sex steroid drops precipitously after giving birth. Here, we report that brain-derived CCN3 (Cellular Communication Network factor 3) secreted from KISS1 neurons of the arcuate nucleus (ARC KISS1 ) fills this void and functions as a potent osteoanabolic factor to promote bone mass in lactating females. Using parabiosis and bone transplant methods, we first established that a humoral factor accounts for the female-specific, high bone mass previously observed by our group after deleting estrogen receptor alpha (ER α ) from ARC KISS1 neurons 1 . This exceptional bone phenotype in mutant females can be traced back to skeletal stem cells (SSCs), as reflected by their increased frequency and osteochondrogenic potential. Based on multiple assays, CCN3 emerged as the most promising secreted pro-osteogenic factor from ARC KISS1 neurons, acting on mouse and human SSCs at low subnanomolar concentrations independent of age or sex. That brain-derived CCN3 promotes bone formation was further confirmed by in vivo gain- and loss-of-function studies. Notably, a transient rise in CCN3 appears in ARC KISS1 neurons in estrogen-depleted lactating females coincident with increased bone remodeling and high calcium demand. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone that defines a novel female-specific brain-bone axis for ensuring mammalian species survival.

15.
J Lipid Res ; 53(2): 227-46, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22140268

RESUMEN

White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction of adipose tissue and led to our current understanding that adipogenesis is important not only for WAT expansion, but also for maintenance of adipocyte numbers under normal metabolic states. At the turn of the millenium, studies investigating preadipocyte differentiation collided with developments in stem cell research, leading to the discovery of multipotent stem cells within WAT. Such adipose tissue-derived stem cells (ASCs) are capable of differentiating into numerous cell types of both mesodermal and nonmesodermal origin, leading to their extensive investigation from a therapeutic and tissue engineering perspective. However, the insights gained through studying ASCs have also contributed to more-recent progress in attempts to better characterize committed preadipocytes in adipose tissue. Thus, ASC research has gone back to its roots, thereby expanding our knowledge of preadipocyte commitment and adipose tissue biology.


Asunto(s)
Tejido Adiposo/citología , Células Madre Multipotentes , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores/análisis , Diferenciación Celular , Condrocitos/citología , Células Endoteliales , Humanos , Células Madre Multipotentes/metabolismo , Células Musculares/citología , Osteoblastos/citología , Ingeniería de Tejidos
16.
J Craniofac Surg ; 23(1): 333-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22337437

RESUMEN

Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that more than 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since the early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past 20 years, the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, and periodontium and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery and more clinically efficacious, although potentially more hazardous, viral methods. Although hundreds of gene therapy clinical trials have taken place in the past 20 years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex.


Asunto(s)
Regeneración Ósea/genética , Huesos Faciales/anatomía & histología , Terapia Genética/métodos , Cráneo/anatomía & histología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos , Humanos , Ingeniería de Proteínas/métodos
17.
J Cell Biochem ; 112(11): 3364-72, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21751240

RESUMEN

Suppressor of cytokine signaling-3 (SOCS3) has multiple functions including inhibition of Janus kinase (Jak) activity, regulation of protein degradation, and suppression of cytokine signaling. SOCS3 modulates macrophage response to cytokines such as IL-6 and leptin that are systemically induced in obesity. Obesity is a suspected risk factor for SOCS3-related pathology such as rheumatoid arthritis and Crohn's disease as well as zoledronic acid (ZA)-induced osteonecrosis of the jaw (ONJ). Thus, understanding the ability of bisphosphonates to modulate SOCS3 is necessary to qualify their contribution to these disorders. ONJ occurs in up to 10% of patients using intravenous bisphosphonates and has an unknown pathogenesis that may be linked to decreased bone turnover, altered vascularity, bacterial invasion, and compromised wound healing. Given the increased risk of ONJ with obesity and importance of macrophages in wound healing, we hypothesized that amino-bisphosphonates could contribute to the pathogenesis of ONJ by regulating macrophage responses to cytokines such as leptin and IL-6. We report that ZA is a novel inhibitor of SOCS3 in primary macrophages and human ONJ biopsy specimens. Inhibition of SOCS3 by ZA resulted in significant increases in IL-6 production. SOCS3 transcription is regulated by nuclear accumulation of phosphorylated-Stat3 (P-Stat3). We found that ZA decreased phosphorylation of Stat3 in a mevalonate-pathway dependent manner. However, restoration of P-Stat3 was not sufficient to correct SOCS3 inhibition. We propose that disruption of macrophage SOCS3 expression by amino-bisphosphonates such as ZA may be a novel contributor to inflammatory phenotypes in obesity and the pathogenesis of ONJ.


Asunto(s)
Citocinas/biosíntesis , Difosfonatos/farmacología , Imidazoles/farmacología , Macrófagos/efectos de los fármacos , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Humanos , Interleucina-6/biosíntesis , Leptina/fisiología , Macrófagos/metabolismo , Ácido Mevalónico/metabolismo , Ratones , Reacción en Cadena de la Polimerasa , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ácido Zoledrónico
18.
Stem Cells ; 28(6): 1071-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20506495

RESUMEN

Leptin functions through a well-documented central neuroendocrine pathway to regulate bone mass. However, the ability of leptin to modulate bone mass through a peripheral mechanism has been debated due to conflicting in vitro results and lack of sufficient in vivo models. We utilized mice with LoxP sites introduced into the long-form leptin receptor (ObRb) gene to determine how leptin regulates mesenchymal progenitor cell (MPC) differentiation and osteoblast function in vitro and in vivo. Rapid phosphorylation of Stat3 after leptin treatment of bone marrow stromal cells (BMSCs) from mice with conditional deletion of ObRb in macrophages (LysM(Cre+F/F)) confirmed expression of functional leptin receptors by BMSCs. Adenovirus-Cre mediated disruption of ObRb in primary stromal cells decreased mineralization and increased adipogenesis. In contrast, BMSCs harvested from leptin-signaling deficient Ob/Ob or Db/Db mice showed increased mineralization. To determine the physiologic relevance of these differences, mice with cell-specific deletion of ObRb in mesenchymal precursors (3.6(Cre+F/F)) or osteoblasts (2.3(Cre+F/F)) were generated. Although the 2.3(Cre+F/F) mice were grossly normal, the 3.6(Cre+F/F) mice displayed mild obesity that was not attributed to food intake. Femurs of 3.6(Cre+F/F) animals showed a 58%-61.9% increase in trabecular bone volume and a 65.5%-74% increase in bone mineral density. Cortical volume and mineral content were also increased 18%-22%. Primary 3.6(Cre+F/F) BMSCs recapitulated the high mineralization phenotype of Ob/Ob and Db/Db BMSCs. We conclude that leptin may have multiple peripheral roles depending on the differentiation state of MPC. Leptin (a) helps maintain MPCs in an undifferentiated state and (b) promotes mineralization of more differentiated osteoblasts.


Asunto(s)
Diferenciación Celular , Leptina/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Receptores de Leptina/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Calcificación Fisiológica , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Receptores de Leptina/genética
19.
Cells Tissues Organs ; 194(2-4): 268-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21555864

RESUMEN

The collagen 2.3 and 3.6 promoters have been used to drive Cre expression for generation of conditional transgenic mutant mice. Within the bone, Col3.6 is expressed by mesenchymal precursor cells and their downstream progeny, while Col2.3 is more osteoblast specific. Our generation of transgenic mice with Col2.3-Cre- and Col3.6-Cre-driven deletion of the long-form leptin receptor (ObRb) necessitated a thorough analysis of the nonspecific expression of these promoters in the central nervous system. Both Col2.3 and Col3.6 were capable of forcing loxP recombination in the brain as demonstrated by EGFP expression in ROSA reporter mice. Expression of Col2.3 was limited to the central base of the brain near the third ventricle. In contrast, robust expression of Col3.6 was noted throughout the brain, centering near the distal third ventricle, third ventricle, and aqueduct. We subsequently analyzed the colocalization of leptin-responsive P-Stat3 neurons with Col3.6-expressing neurons. Approximately 5-10% colocalization was noted in leptin-responsive brain areas such as the arcuate nucleus, dorsal medial hypothalamus, ventral premammillary nucleus, and lateral hypothalamus. Injection of 3.6(Cre+F/F) ObRb knockout mice with leptin confirmed the presence of an intact P-Stat3 response that was dampened in the lateral hypothalamus (p < 0.050). This test was done to explore the contribution of neural leptin signaling to the bone phenotype of the 3.6(Cre+F/F) mice. Our analysis indicates that neural ObRb deletion, while present, is likely not the sole driver of femoral changes through traditional sympathetic circuits.


Asunto(s)
Encéfalo/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo VI/genética , Regulación de la Expresión Génica , Leptina/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Leptina/administración & dosificación , Leptina/farmacología , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Int J Oral Maxillofac Implants ; 26 Suppl: 70-9; discussion 80-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21465000

RESUMEN

The use of soluble signals for modulation of bone formation has become a significant area of clinical research in recent years. Improvements in implant site preparation and osseointegration have already been achieved with the use of recombinant platelet-derived growth factor and bone morphogenetic proteins on osteogenic scaffolds. Other states of insufficient bone such as osteoporosis are frequently treated with inhibitors of osteoclast function or osteoblast anabolic agents. However, despite the existence of promising therapies targeting osteoblasts and osteoclasts directly, therapies utilizing indirect regulation through secondary cellular nodes of control (NOC) are just beginning to emerge. This article will review current strategies for regulation of bone formation by targeting two primary NOCs, the osteoblast and osteoclast, as well as four secondary NOCs, the vascular, hematopoietic, mesenchymal, and neural.


Asunto(s)
Huesos/fisiología , Implantes Dentales , Péptidos y Proteínas de Señalización Intercelular/fisiología , Oseointegración/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Regeneración Ósea/fisiología , Huesos/citología , Humanos , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis/fisiología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA