Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Acta Neuropathol ; 147(1): 41, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363426

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Enfermedades Neurodegenerativas/patología , Cinesinas/genética , Cinesinas/metabolismo , Neuronas Motoras/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mutación/genética
2.
Hum Mol Genet ; 27(23): 4103-4116, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379317

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases characterized by the progressive loss of specific groups of neurons. Due to clinical, genetic and pathological overlap, both diseases are considered as the extremes of one disease spectrum and in a number of ALS and FTD patients, fused in sarcoma (FUS) aggregates are present. Even in families with a monogenetic disease cause, a striking variability is observed in disease presentation. This suggests the presence of important modifying genes. The identification of disease-modifying genes will contribute to defining clear therapeutic targets and to understanding the pathways involved in motor neuron death. In this study, we established a novel in vivo screening platform in which new modifying genes of FUS toxicity can be identified. Expression of human FUS induced the selective apoptosis of crustacean cardioactive peptide (CCAP) neurons from the ventral nerve cord of fruit flies. No defects in the development of these neurons were observed nor were the regulatory CCAP neurons from the brain affected. We used the number of CCAP neurons from the ventral nerve cord as an in vivo read-out for FUS toxicity in neurons. Via a targeted screen, we discovered a potent modifying role of proteins involved in nucleocytoplasmic transport. Downregulation of Nucleoporin 154 and Exportin1 (XPO1) prevented FUS-induced neurotoxicity. Moreover, we show that XPO1 interacted with FUS. Silencing XPO1 significantly reduced the propensity of FUS to form inclusions upon stress. Taken together, our findings point to an important role of nucleocytoplasmic transport proteins in FUS-induced ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Carioferinas/genética , Neuropéptidos/genética , Proteína FUS de Unión a ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente/genética , Apoptosis/genética , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Demencia Frontotemporal/fisiopatología , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Humanos , Masculino , Mutación , Neuronas/patología , Proteínas de Complejo Poro Nuclear/genética , Agregación Patológica de Proteínas/genética , Proteína Exportina 1
3.
Brain ; 141(3): 673-687, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415205

RESUMEN

Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Glicina-ARNt Ligasa/genética , Histona Desacetilasa 6/metabolismo , Mutación/genética , Animales , Transporte Axonal/genética , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Ganglios Espinales/citología , Histona Desacetilasa 6/genética , Ácidos Hidroxámicos/uso terapéutico , Indoles/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Conducción Nerviosa/genética , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Desempeño Psicomotor/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Tubulina (Proteína)/metabolismo
4.
Hum Mol Genet ; 25(16): 3491-3499, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27378687

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP3 receptor 2 (IP3R2), was detected in sporadic ALS patients. Here, we demonstrate that IP3R2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IP3R2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IP3R2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1G93A mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IP3R2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1G93A mice. Besides systemic inflammation, IP3R2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IP3R2 protects against the negative effects of inflammation, suggesting that the increase in IP3R2 expression in ALS patients is a protective response.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Inflamación/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Interferón gamma/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Lipopolisacáridos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Médula Espinal/metabolismo , Médula Espinal/patología
5.
Acta Neuropathol ; 135(3): 427-443, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29302778

RESUMEN

The exact mechanism underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) associated with the GGGGCC repeat expansion in C9orf72 is still unclear. Two gain-of-function mechanisms are possible: repeat RNA toxicity and dipeptide repeat protein (DPR) toxicity. We here dissected both possibilities using a zebrafish model for ALS. Expression of two DPRs, glycine-arginine and proline-arginine, induced a motor axonopathy. Similarly, expanded sense and antisense repeat RNA also induced a motor axonopathy and formed mainly cytoplasmic RNA foci. However, DPRs were not detected in these conditions. Moreover, stop codon-interrupted repeat RNA still induced a motor axonopathy and a synergistic role of low levels of DPRs was excluded. Altogether, these results show that repeat RNA toxicity is independent of DPR formation. This RNA toxicity, but not the DPR toxicity, was attenuated by the RNA-binding protein Pur-alpha and the autophagy-related protein p62. Our findings demonstrate that RNA toxicity, independent of DPR toxicity, can contribute to the pathogenesis of C9orf72-associated ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Escherichia coli , Técnicas de Transferencia de Gen , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Pez Cebra
6.
Cell Rep ; 24(3): 529-537.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021151

RESUMEN

RNA-binding protein aggregation is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). To gain better insight into the molecular interactions underlying this process, we investigated FUS, which is mutated and aggregated in both ALS and FTLD. We generated a Drosophila model of FUS toxicity and identified a previously unrecognized synergistic effect between the N-terminal prion-like domain and the C-terminal arginine-rich domain to mediate toxicity. Although the prion-like domain is generally considered to mediate aggregation of FUS, we find that arginine residues in the C-terminal low-complexity domain are also required for maturation of FUS in cellular stress granules. These data highlight an important role for arginine-rich domains in the pathology of RNA-binding proteins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/toxicidad , Drosophila melanogaster/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/química , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/toxicidad , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Línea Celular Tumoral , Proteínas de Drosophila/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Humanos , Actividad Motora , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Dominios Proteicos , Relación Estructura-Actividad
7.
Sci Rep ; 6: 20877, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26869068

RESUMEN

Hexanucleotide repeat expansions in C9orf72 are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) (c9ALS/FTD). Unconventional translation of these repeats produces dipeptide repeat proteins (DPRs) that may cause neurodegeneration. We performed a modifier screen in Drosophila and discovered a critical role for importins and exportins, Ran-GTP cycle regulators, nuclear pore components, and arginine methylases in mediating DPR toxicity. These findings provide evidence for an important role for nucleocytoplasmic transport in the pathogenic mechanism of c9ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Núcleo Celular/metabolismo , Dipéptidos/química , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Genes de Insecto , Pruebas Genéticas , Secuencias Repetitivas de Aminoácido , Transporte Activo de Núcleo Celular/genética , Animales , Arginina/metabolismo , Modelos Animales de Enfermedad , Ojo/patología , Células HeLa , Humanos , Metilación , Interferencia de ARN
8.
Neurobiol Aging ; 34(11): 2541-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23706646

RESUMEN

Progranulin (PGRN) is a growth factor involved in wound healing, inflammation, tumor growth, and neurodegeneration. Mutations in the gene encoding PGRN give rise to shortage of PGRN and cause familial frontotemporal lobar degeneration. PGRN exerts neurotrophic functions and binding of PGRN to the membrane receptor sortilin (SORT1) mediates the endocytosis of PGRN. SORT1-mediated uptake plays an important role in the regulation of extracellular PGRN levels. We studied the role of SORT1 in PGRN-mediated neuroprotection in vitro and in vivo. The survival-enhancing effect of PGRN seemed to be dependent on the granulin E (GRN E) domain. Pharmacologic inhibition of the GRN E-SORT1 interaction or deletion of the SORT1 binding site of GRN E did not abolish its neurotrophic function. In addition, the in vivo phenotype of PGRN knockdown in zebrafish embryos was not phenocopied by SORT1 knockdown. These results suggest that GRN E mediates the neurotrophic properties of PGRN and that binding to SORT1 is not required for this effect.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Neuronas Motoras/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Sitios de Unión/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Óxidos S-Cíclicos/farmacología , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Morfolinas/farmacología , Neuronas Motoras/citología , Factores de Crecimiento Nervioso/metabolismo , Neuritas/efectos de los fármacos , Progranulinas , Estructura Terciaria de Proteína/fisiología , Ratas , Ratas Wistar , Tiazoles/farmacología , Pez Cebra
9.
Neurobiol Aging ; 31(12): 2185-91, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19185395

RESUMEN

Influx of Ca(2+) ions through the α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptors is toxic to neurons and contributes to motor neuron degeneration observed in amyotrophic lateral sclerosis (ALS). The Ca(2+) permeability of the AMPA receptor depends on its subunit composition. If the GluR2 subunit is present in the receptor complex, the AMPA receptor is impermeable to Ca(2+). In this study, we identified vascular endothelial growth factor-A (VEGF) as a GluR2 inducing molecule. Cultured motor neurons pretreated with VEGF displayed higher GluR2 levels. This resulted in AMPA receptor currents with a low relative Ca(2+) permeability and in motor neurons that were less vulnerable to AMPA receptor-mediated excitotoxicity. This effect of VEGF was mediated through the VEGFR2 present on the motor neurons and was due to stimulation of GluR2 transcription. Intracerebroventricular treatment with VEGF similarly induced GluR2 expression in the ventral spinal cord of rats and this mechanism contributes to the protective effect of VEGF on motor neurons.


Asunto(s)
Neuronas Motoras/metabolismo , Degeneración Nerviosa/terapia , Neurotoxinas/antagonistas & inhibidores , Receptores AMPA/biosíntesis , Regulación hacia Arriba/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Señalización del Calcio/fisiología , Células Cultivadas , Técnicas de Cocultivo , Inyecciones Intraventriculares/métodos , Neuronas Motoras/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neurotoxinas/farmacología , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores AMPA/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/fisiología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
10.
Proc Natl Acad Sci U S A ; 104(37): 14825-30, 2007 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-17804792

RESUMEN

Influx of Ca(2+) ions through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors contributes to neuronal damage in stroke, epilepsy, and neurodegenerative disorders such as ALS. The Ca(2+) permeability of AMPA receptors is largely determined by the glutamate receptor 2 (GluR2) subunit, receptors lacking GluR2 being permeable to Ca(2+) ions. We identified a difference in GluR2 expression in motor neurons from two rat strains, resulting in a difference in vulnerability to AMPA receptor-mediated excitotoxicity both in vitro and in vivo. Astrocytes from the ventral spinal cord were found to mediate this difference in GluR2 expression in motor neurons. The presence of ALS-causing mutant superoxide dismutase 1 in astrocytes abolished their GluR2-regulating capacity and thus affected motor neuron vulnerability to AMPA receptor-mediated excitotoxicity. These results reveal a mechanism through which astrocytes influence neuronal functioning in health and disease.


Asunto(s)
Astrocitos/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/enzimología , Calcio/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Expresión Génica/fisiología , Genes Reporteros , Luciferasas/metabolismo , Modelos Biológicos , Neuronas Motoras/fisiología , Mutación , Técnicas de Placa-Clamp , Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Médula Espinal/citología , Superóxido Dismutasa/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
11.
Neurobiol Dis ; 17(1): 21-8, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15350962

RESUMEN

Both in mice and humans, low expression levels of vascular endothelial growth factor (VEGF) are linked to adult-onset motor neuron disease or amyotrophic lateral sclerosis (ALS). The mechanism through which reduced VEGF levels result in this phenotype is unknown. We therefore examined the direct effects of VEGF on motor neurons and found VEGF to have a direct neurotrophic effect on motor neurons in vitro. Survival and vulnerability to excitotoxicity of motor neurons from VEGF(delta/delta) mice was however similar to that of motor neurons from non-transgenic littermates. The VEGF concentration in the spinal cord of mutant (G93A) SOD1 mice was not different from that found in wild-type SOD1 overexpressing mice. Upregulation of VEGF in the spinal cord, by housing mutant (G93A) SOD1 mice in hypoxic conditions, did not affect their life span. Our results show that VEGF is a neurotrophic factor for motor neurons in vitro, and shortage of this neurotrophic factor may contribute to the motor neuron death observed in humans and animals with low VEGF expression levels.


Asunto(s)
Neuronas Motoras/metabolismo , Degeneración Nerviosa/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/genética , Ratas , Ratas Wistar , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA