Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Immunol Immunother ; 65(3): 273-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26786874

RESUMEN

Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.


Asunto(s)
Células Estrelladas Hepáticas/fisiología , Células Mieloides/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Celecoxib/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dasatinib/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Tolerancia Inmunológica , Indoles/farmacología , Monocitos/fisiología , Células Mieloides/inmunología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Sorafenib , Sunitinib
2.
Trials ; 23(1): 57, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045869

RESUMEN

BACKGROUND: Glioblastoma is the most frequent and malignant primary brain tumor. Even in the subgroup with O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and favorable response to first-line therapy, survival after relapse is short (12 months). Standard therapy for recurrent MGMT-methylated glioblastoma is not standardized and may consist of re-resection, re-irradiation, and chemotherapy with temozolomide (TMZ), lomustine (CCNU), or a combination thereof. Preclinical results show that meclofenamate (MFA), originally developed as a nonsteroidal anti-inflammatory drug (NSAID) and registered in the USA, sensitizes glioblastoma cells to temozolomide-induced toxicity via inhibition of gap junction-mediated intercellular cytosolic traffic and demolishment of tumor microtube (TM)-based network morphology. METHODS: In this study, combined MFA/TMZ therapy will be administered (orally) in patients with first relapse of MGMT-methylated glioblastoma. A phase I component (6-12 patients, 2 dose levels of MFA + standard dose TMZ) evaluates safety and feasibility and determines the dose for the randomized phase II component (2 × 30 patients) with progression-free survival as the primary endpoint. DISCUSSION: This study is set up to assess toxicity and first indications of efficacy of MFA repurposed in the setting of a very difficult-to-treat recurrent tumor. The trial is a logical next step after the identification of the role of resistance-providing TMs in glioblastoma, and results will be crucial for further trials targeting TMs. In case of favorable results, MFA may constitute the first clinically feasible TM-targeted drug and therefore might bridge the idea of a TM-targeted therapeutic approach from basic insights into clinical reality. TRIAL REGISTRATION: EudraCT 2021-000708-39 . Registered on 08 February 2021.


Asunto(s)
Glioblastoma , Antineoplásicos Alquilantes/efectos adversos , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Ácido Meclofenámico/uso terapéutico , Recurrencia Local de Neoplasia , Temozolomida/efectos adversos , Proteínas Supresoras de Tumor/uso terapéutico
3.
Front Genet ; 12: 761714, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659371

RESUMEN

Huntington's disease (HD) is caused by an expansion mutation of a CAG repeat in exon 1 of the huntingtin (HTT) gene, that encodes an expanded polyglutamine tract in the HTT protein. HD is characterized by progressive psychiatric and cognitive symptoms associated with a progressive movement disorder. HTT is ubiquitously expressed, but the pathological changes caused by the mutation are most prominent in the central nervous system. Since the mutation was discovered, research has mainly focused on the mutant HTT protein. But what if the polyglutamine protein is not the only cause of the neurotoxicity? Recent studies show that the mutant RNA transcript is also involved in cellular dysfunction. Here we discuss the abnormal interaction of the mutant HTT transcript with a protein complex containing the MID1 protein. MID1 aberrantly binds to CAG repeats and this binding increases with CAG repeat length. Since MID1 is a translation regulator, association of the MID1 complex stimulates translation of mutant HTT mRNA, resulting in an overproduction of polyglutamine protein. Thus, blocking the interaction between MID1 and mutant HTT mRNA is a promising therapeutic approach. Additionally, we show that MID1 expression in the brain of both HD patients and HD mice is aberrantly increased. This finding further supports the concept of blocking the interaction between MID1 and mutant HTT mRNA to counteract mutant HTT translation as a valuable therapeutic strategy. In line, recent studies in which either compounds affecting the assembly of the MID1 complex or molecules targeting HTT RNA, show promising results.

4.
J Mol Biol ; 431(9): 1869-1877, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30711541

RESUMEN

Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD.


Asunto(s)
Enfermedad de Huntington/genética , Empalme del ARN/genética , ARN/genética , Animales , Humanos , Proteína Huntingtina/genética , Empalmosomas/genética
5.
PLoS One ; 13(1): e0190437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293623

RESUMEN

The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542 that bind to the 3'-UTR of the MID1 mRNA. These miRNAs not only regulate MID1 expression but also mTOR signaling and translation of disease associated mRNAs and could therefore serve as potential drugs for future therapy development.


Asunto(s)
MicroARNs/fisiología , Proteínas de Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Células HEK293 , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas
6.
ACS Chem Neurosci ; 9(6): 1399-1408, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29506378

RESUMEN

Expanded CAG trinucleotide repeats in Huntington's disease (HD) are causative for neurotoxicity. The mutant CAG repeat RNA encodes neurotoxic polyglutamine proteins and can lead to a toxic gain of function by aberrantly recruiting RNA-binding proteins. One of these is the MID1 protein, which induces aberrant Huntingtin (HTT) protein translation upon binding. Here we have identified a set of CAG repeat binder candidates by in silico methods. One of those, furamidine, reduces the level of binding of HTT mRNA to MID1 and other target proteins in vitro. Metadynamics calculations, fairly consistent with experimental data measured here, provide hints about the binding mode of the ligand. Importantly, furamidine also decreases the protein level of HTT in a HD cell line model. This shows that small molecules masking RNA-MID1 interactions may be active against mutant HTT protein in living cells.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Línea Celular/efectos de los fármacos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/metabolismo , Péptidos/farmacología , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido/genética
7.
Cell Death Discov ; 4: 4, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29531801

RESUMEN

Alzheimer's disease (AD) is characterized by two neuropathological hallmarks: senile plaques, which are composed of amyloid-ß (Aß) peptides, and neurofibrillary tangles, which are composed of hyperphosphorylated tau protein. Aß peptides are derived from sequential proteolytic cleavage of the amyloid precursor protein (APP). In this study, we identified a so far unknown mode of regulation of APP protein synthesis involving the MID1 protein complex: MID1 binds to and regulates the translation of APP mRNA. The underlying mode of action of MID1 involves the mTOR pathway. Thus, inhibition of the MID1 complex reduces the APP protein level in cultures of primary neurons. Based on this, we used one compound that we discovered previously to interfere with the MID1 complex, metformin, for in vivo experiments. Indeed, long-term treatment with metformin decreased APP protein expression levels and consequently Aß in an AD mouse model. Importantly, we have initiated the metformin treatment late in life, at a time-point where mice were in an already progressed state of the disease, and could observe an improved behavioral phenotype. These findings together with our previous observation, showing that inhibition of the MID1 complex by metformin also decreases tau phosphorylation, make the MID1 complex a particularly interesting drug target for treating AD.

8.
Front Cell Neurosci ; 10: 226, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27774050

RESUMEN

Expansion of CAG repeats, which code for the disease-causing polyglutamine protein, is a common feature in polyglutamine diseases. RNA-mediated mechanisms that contribute to neuropathology in polyglutamine diseases are important. RNA-toxicity describes a phenomenon by which the mutant CAG repeat RNA recruits RNA-binding proteins, thereby leading to aberrant function. For example the MID1 protein binds to mutant huntingtin (HTT) RNA, which is linked to Huntington's disease (HD), at its CAG repeat region and induces protein synthesis of mutant protein. But is this mechanism specific to HD or is it a common mechanism in CAG repeat expansion disorders? To answer this question, we have analyzed the interaction between MID1 and three other CAG repeat mRNAs, Ataxin2 (ATXN2), Ataxin3 (ATXN3), and Ataxin7 (ATXN7), that all differ in the sequence flanking the CAG repeat. We show that ATXN2, ATXN3, and ATXN7 bind to MID1 in a CAG repeat length-dependent manner. Furthermore, we show that functionally, in line with what we have previously observed for HTT, the binding of MID1 to ATXN2, ATXN3, and ATXN7 mRNA induces protein synthesis in a repeat length-dependent manner. Our data suggest that regulation of protein translation by the MID1 complex is a common mechanism for CAG repeat containing mRNAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA