Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Blood ; 135(17): 1452-1457, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32157302

RESUMEN

Common variable immunodeficiency (CVID) is a disease characterized by increased susceptibility to infections, hypogammaglobulinemia, and immune dysregulation. Although CVID is thought to be a disorder of the peripheral B-cell compartment, in 25% of patients, early B-cell development in the bone marrow is impaired. Because poor B-cell reconstitution after hematopoietic stem cell transplantation has been observed, we hypothesized that in some patients the bone marrow environment is not permissive to B-cell development. Studying the differentiation dynamics of bone marrow-derived CD34+ cells into immature B cells in vitro allowed us to distinguish patients with B-cell intrinsic defects and patients with a nonpermissive bone marrow environment. In the former, immature B cells did not develop and in the latter CD34+ cells differentiated into immature cells in vitro, but less efficiently in vivo. In a further group of patients, the uncommitted precursors were unable to support the constant development of B cells in vitro, indicating a possible low frequency or exhaustion of the precursor population. Hematopoietic stem cell transplantation would result in normal B-cell repopulation in case of intrinsic B-cell defect, but in defective B-cell repopulation in a nonpermissive environment. Our study points to the importance of the bone marrow niche in the pathogenesis of CVID.


Asunto(s)
Linfocitos B/patología , Médula Ósea/patología , Diferenciación Celular , Inmunodeficiencia Variable Común/patología , Hematopoyesis , Activación de Linfocitos/inmunología , Linfocitos B/inmunología , Médula Ósea/inmunología , Inmunodeficiencia Variable Común/etiología , Humanos , Pronóstico
2.
J Autoimmun ; 101: 145-152, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31054942

RESUMEN

BACKGROUND: Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits T-cell activation and is expressed on T-regulatory cells. Human CTLA-4 deficiency results in severe immune dysregulation. Abatacept (CTLA-4 Ig) is approved for the treatment of rheumatoid arthritis (RA) and its mechanism of action is attributed to effects on T-cells. It is known that CTLA-4 modulates the expression of its ligands CD80 and CD86 on antigen presenting cells (APC) by transendocytosis. As B-cells express CD80/CD86 and function as APC, we hypothesize that B-cells are a direct target of abatacept. OBJECTIVES: To investigate direct effects of abatacept on human B-lymphocytes in vitro and in RA patients. METHODS: The effect of abatacept on healthy donor B-cells' phenotype, activation and CD80/CD86 expression was studied in vitro. Nine abatacept-treated RA patients were studied. Seven of these were followed up to 24 months, and two up to 12 months only and treatment response, immunoglobulins, ACPA, RF concentrations, B-cell phenotype and ACPA-specific switched memory B-cell frequency were assessed. RESULTS: B-cell development was unaffected by abatacept. Abatacept treatment resulted in a dose-dependent decrease of CD80/CD86 expression on B-cells in vitro, which was due to dynamin-dependent internalization. RA patients treated with abatacept showed a progressive decrease in plasmablasts and serum IgG. While ACPA-titers only moderately declined, the frequency of ACPA-specific switched memory B-cells significantly decreased. CONCLUSIONS: Abatacept directly targets B-cells by reducing CD80/CD86 expression. Impairment of antigen presentation and T-cell activation may result in altered B-cell selection, providing a new therapeutic mechanism and a base for abatacept use in B-cell mediated autoimmunity.


Asunto(s)
Abatacept/farmacología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Expresión Génica , Memoria Inmunológica/efectos de los fármacos , Adulto , Anciano , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Linfocitos B/efectos de los fármacos , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunofenotipificación , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad
3.
Front Immunol ; 14: 1087986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776828

RESUMEN

Background: Janus kinase (JAK) inhibitors have been approved for the treatment of several immune-mediated diseases (IMIDs) including rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other IMIDs. However, detailed studies investigating the effects of different JAK inhibitors on B cells are missing. Within this study, we therefore aimed to characterize the effect of JAK inhibition on the B cell compartment. Methods: To this end, we investigated the B cell compartment under JAK inhibition and compared the specific effects of the different JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib (JAK1/2) as well as filgotinib (selective JAK1) on in-vitro B cell activation, proliferation, and class switch recombination and involved pathways. Results: While B cell phenotyping of RA patients showed an increase in marginal zone (MZ) B cells under JAK inhibition, comparison with healthy donors revealed that the relative frequency of MZ B cells was still lower compared to healthy controls. In an in-vitro model of T-cell-independent B cell activation we observed that JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. We detected an altered B cell differentiation with a significant increase in MZ-like B cells and an increase in plasmablast differentiation in the first days of culture, most pronounced with the pan-JAK inhibitor tofacitinib, although there was no increase in immunoglobulin secretion in-vitro. Notably, we further observed a profound reduction of switched memory B cell formation, especially with JAK1/2 inhibition. JAK inhibitor treatment led to a dose-dependent reduction of STAT3 expression and phosphorylation as well as STAT3 target gene expression and modulated the secretion of pro- and anti-inflammatory cytokines by B cells. Conclusion: JAK inhibition has a major effect on B cell activation and differentiation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.


Asunto(s)
Artritis Reumatoide , Inhibidores de las Cinasas Janus , Humanos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Agentes Inmunomoduladores , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA