Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 56(10): 1981-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26272553

RESUMEN

Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Chara/metabolismo , Microtúbulos/metabolismo
2.
Nat Commun ; 7: 10754, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876972

RESUMEN

Aneuploidy is a hallmark of cancer and underlies genetic disorders characterized by severe developmental defects, yet the molecular mechanisms explaining its effects on cellular physiology remain elusive. Here we show, using a series of human cells with defined aneuploid karyotypes, that gain of a single chromosome increases genomic instability. Next-generation sequencing and SNP-array analysis reveal accumulation of chromosomal rearrangements in aneuploids, with break point junction patterns suggestive of replication defects. Trisomic and tetrasomic cells also show increased DNA damage and sensitivity to replication stress. Strikingly, we find that aneuploidy-induced genomic instability can be explained by the reduced expression of the replicative helicase MCM2-7. Accordingly, restoring near-wild-type levels of chromatin-bound MCM helicase partly rescues the genomic instability phenotypes. Thus, gain of chromosomes triggers replication stress, thereby promoting genomic instability and possibly contributing to tumorigenesis.


Asunto(s)
ADN/biosíntesis , Inestabilidad Genómica/genética , Metafase/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Neoplasias/genética , Tetrasomía/genética , Trisomía/genética , Aneuploidia , Ciclo Celular/genética , Línea Celular , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 5/genética , Cromosomas Humanos Par 8/genética , Hibridación Genómica Comparativa , Técnica del Anticuerpo Fluorescente , Células HCT116 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microscopía Confocal , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA