Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044490

RESUMEN

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Dicarboxílicos , Suplementos Dietéticos , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Cisplatino , Ácidos Dicarboxílicos/administración & dosificación , Ácidos Grasos , Proteómica , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología
2.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628798

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths globally. Incidence rates are steadily increasing, creating an unmet need for new therapeutic options. Recently, the inhibition of sirtuin-2 (Sirt2) was proposed as a potential treatment for HCC, despite contradictory findings of its role as both a tumor promoter and suppressor in vitro. Sirt2 functions as a lysine deacetylase enzyme. However, little is known about its biological influence, despite its implication in several age-related diseases. This study evaluated Sirt2's role in HCC in vivo using an inducible c-MYC transgene in Sirt2+/+ and Sirt2-/- mice. Sirt2-/- HCC mice had smaller, less proliferative, and more differentiated liver tumors, suggesting that Sirt2 functions as a tumor promoter in this context. Furthermore, Sirt2-/- HCCs had significantly less c-MYC oncoprotein and reduction in c-MYC nuclear localization. The RNA-seq showed that only three genes were significantly dysregulated due to loss of Sirt2, suggesting the underlying mechanism is due to Sirt2-mediated changes in the acetylome, and that the therapeutic inhibition of Sirt2 would not perturb the oncogenic transcriptome. The findings of this study suggest that Sirt2 inhibition could be a promising molecular target for slowing HCC growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Ratones Transgénicos , Carcinoma Hepatocelular/genética , Sirtuina 2/genética , Neoplasias Hepáticas/genética , Carcinógenos , Modelos Animales de Enfermedad
3.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36335793

RESUMEN

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Asunto(s)
Glucosa , Sialiltransferasas , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Gangliósido G(M3)/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Ácido Pirúvico , Convulsiones/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
4.
Anal Biochem ; 581: 113332, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31194945

RESUMEN

Acyl-CoA dehydrogenases (ACADs) play key roles in the mitochondrial catabolism of fatty acids and branched-chain amino acids. All nine characterized ACAD enzymes use electron transfer flavoprotein (ETF) as their redox partner. The gold standard for measuring ACAD activity is the anaerobic ETF fluorescence reduction assay, which follows the decrease of pig ETF fluorescence as it accepts electrons from an ACAD in vitro. Although first described 35 years ago, the assay has not been widely used due to the need to maintain an anaerobic assay environment and to purify ETF from pig liver mitochondria. Here, we present a method for expressing recombinant pig ETF in E coli and purifying it to homogeneity. The recombinant protein is virtually pure after one chromatography step, bears higher intrinsic fluorescence than the native enzyme, and provides enhanced activity in the ETF fluorescence reduction assay. Finally, we present a simplified protocol for removing molecular oxygen that allows adaption of the assay to a 96-well plate format. The availability of recombinant pig ETF and the microplate version of the ACAD activity assay will allow wide application of the assay for both basic research and clinical diagnostics.


Asunto(s)
Acil-CoA Deshidrogenasas/química , Flavoproteínas Transportadoras de Electrones/química , Acil-CoA Deshidrogenasas/genética , Animales , Flavoproteínas Transportadoras de Electrones/genética , Escherichia coli/química , Escherichia coli/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Porcinos
5.
Front Physiol ; 15: 1370539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487262

RESUMEN

Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.

6.
Biomolecules ; 14(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39334926

RESUMEN

Sirtuin-2 (Sirt2), an NAD+-dependent lysine deacylase enzyme, has previously been implicated as a regulator of glucose metabolism, but the specific mechanisms remain poorly defined. Here, we observed that Sirt2-/- males, but not females, have decreased body fat, moderate hypoglycemia upon fasting, and perturbed glucose handling during exercise compared to wild type controls. Conversion of injected lactate, pyruvate, and glycerol boluses into glucose via gluconeogenesis was impaired, but only in males. Primary Sirt2-/- male hepatocytes exhibited reduced glycolysis and reduced mitochondrial respiration. RNAseq and proteomics were used to interrogate the mechanisms behind this liver phenotype. Loss of Sirt2 did not lead to transcriptional dysregulation, as very few genes were altered in the transcriptome. In keeping with this, there were also negligible changes to protein abundance. Site-specific quantification of the hepatic acetylome, however, showed that 13% of all detected acetylated peptides were significantly increased in Sirt2-/- male liver versus wild type, representing putative Sirt2 target sites. Strikingly, none of these putative target sites were hyperacetylated in Sirt2-/- female liver. The target sites in the male liver were distributed across mitochondria (44%), cytoplasm (32%), nucleus (8%), and other compartments (16%). Despite the high number of putative mitochondrial Sirt2 targets, Sirt2 antigen was not detected in purified wild type liver mitochondria, suggesting that Sirt2's regulation of mitochondrial function occurs from outside the organelle. We conclude that Sirt2 regulates hepatic protein acetylation and metabolism in a sex-specific manner.


Asunto(s)
Hígado , Sirtuina 2 , Masculino , Animales , Femenino , Sirtuina 2/metabolismo , Sirtuina 2/genética , Hígado/metabolismo , Ratones , Ratones Noqueados , Hepatocitos/metabolismo , Acetilación , Ratones Endogámicos C57BL , Caracteres Sexuales , Glucosa/metabolismo , Glucólisis , Factores Sexuales , Gluconeogénesis/genética
7.
J Clin Invest ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687608

RESUMEN

Dicarboxylic fatty acids are generated in the liver and kidney in a minor pathway called fatty acid ω-oxidation. The effects of consuming dicarboxylic fatty acids as an alternative source of dietary fat have not been explored. Here, we fed dodecanedioic acid, a 12-carbon dicarboxylic (DC12), to mice at 20% of daily caloric intake for nine weeks. DC12 increased metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. We observed DC12-specific breakdown products in liver, kidney, muscle, heart, and brain, indicating that oral DC12 escaped first-pass liver metabolism and was utilized by many tissues. In tissues expressing the "a" isoform of acyl-CoA oxidase-1 (ACOX1), a key peroxisomal fatty acid oxidation enzyme, DC12 was chain shortened to the TCA cycle intermediate succinyl-CoA. In tissues with low peroxisomal fatty acid oxidation capacity, DC12 was oxidized by mitochondria. In vitro, DC12 was catabolized even by adipose tissue and was not stored intracellularly. We conclude that DC12 and other dicarboxylic acids may be useful for combatting obesity and for treating metabolic disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA