Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 518(7539): 435-438, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470043

RESUMEN

Members of the dynein family, consisting of cytoplasmic and axonemal isoforms, are motors that move towards the minus ends of microtubules. Cytoplasmic dynein-1 (dynein-1) plays roles in mitosis and cellular cargo transport, and is implicated in viral infections and neurodegenerative diseases. Cytoplasmic dynein-2 (dynein-2) performs intraflagellar transport and is associated with human skeletal ciliopathies. Dyneins share a conserved motor domain that couples cycles of ATP hydrolysis with conformational changes to produce movement. Here we present the crystal structure of the human cytoplasmic dynein-2 motor bound to the ATP-hydrolysis transition state analogue ADP.vanadate. The structure reveals a closure of the motor's ring of six AAA+ domains (ATPases associated with various cellular activites: AAA1-AAA6). This induces a steric clash with the linker, the key element for the generation of movement, driving it into a conformation that is primed to produce force. Ring closure also changes the interface between the stalk and buttress coiled-coil extensions of the motor domain. This drives helix sliding in the stalk which causes the microtubule binding domain at its tip to release from the microtubule. Our structure answers the key questions of how ATP hydrolysis leads to linker remodelling and microtubule affinity regulation.


Asunto(s)
Citoplasma , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Movimiento , Conformación Proteica
2.
Bioessays ; 37(5): 532-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25773057

RESUMEN

Dyneins are a family of motor proteins that move along the microtubule. Motility is generated in the motor domain, which consists of a ring of six AAA+ (ATPases associated with diverse cellular activities) domains, the linker and the microtubule-binding domain (MTBD). The cyclic ATP-hydrolysis in the AAA+ ring causes the remodelling of the linker, which creates the necessary force for movement. The production of force has to be synchronized with cycles of microtubule detachment and rebinding to efficiently create movement along the microtubule. The analysis of four dynein motor domain crystal structures in the essay presented here provides evidence that this crucial coordination is carried out by open/closed AAA+ ring conformations.


Asunto(s)
Dineínas/química , Dineínas/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
3.
Biopolymers ; 105(8): 557-67, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27062277

RESUMEN

Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of force is synchronized with cycles of microtubule binding and release, another important prerequisite for efficient motility along the microtubule. Although the large scale conformational changes that lead to force production and microtubule affinity regulation are well established, it has been largely enigmatic how ATP-hydrolysis in the AAA+ ring causes these rearrangements. The past five years have seen a surge of high resolution information on the dynein motor domain that finally allowed unprecedented insights into this important open question. This review, part of the "ATP and GTP hydrolysis in Biology" special issue, will summarize our current understanding of the dynein motor mechanism with a special emphasis on the recently obtained crystal and EM structures. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 557-567, 2016.


Asunto(s)
Adenosina Trifosfato , Dineínas , Microtúbulos , Movimiento/fisiología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Dineínas/química , Dineínas/metabolismo , Humanos , Hidrólisis , Microtúbulos/química , Microtúbulos/metabolismo , Dominios Proteicos
4.
Proc Natl Acad Sci U S A ; 109(16): 6253-8, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474366

RESUMEN

WaaA is a key enzyme in the biosynthesis of LPS, a critical component of the outer envelope of Gram-negative bacteria. Embedded in the cytoplasmic face of the inner membrane, WaaA catalyzes the transfer of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) to the lipid A precursor of LPS. Here we present crystal structures of the free and CMP-bound forms of WaaA from Aquifex aeolicus, an ancient Gram-negative hyperthermophile. These structures reveal details of the CMP-binding site and implicate a unique sequence motif (GGS/TX(5)GXNXLE) in Kdo binding. In addition, a cluster of highly conserved amino acid residues was identified which represents the potential membrane-attachment and acceptor-substrate binding site of WaaA. A series of site-directed mutagenesis experiments revealed critical roles for glycine 30 and glutamate 31 in Kdo transfer. Our results provide the structural basis of a critical reaction in LPS biosynthesis and allowed the development of a detailed model of the catalytic mechanism of WaaA.


Asunto(s)
Proteínas Bacterianas/química , Glicosiltransferasas/química , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/química , Transferasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Biocatálisis , Cristalografía por Rayos X , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Lípido A/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Transferasas/genética , Transferasas/metabolismo
5.
J Struct Biol ; 186(3): 367-75, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24680784

RESUMEN

Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins.


Asunto(s)
Dineínas Citoplasmáticas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Dineínas Citoplasmáticas/metabolismo , Evolución Molecular , Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
6.
Structure ; 30(11): 1470-1478.e3, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36150379

RESUMEN

Cargo adaptors are crucial in coupling motor proteins with their respective cargos and regulatory proteins. BicD2 is a prominent example within the cargo adaptor family. BicD2 is able to recruit the microtubule motor dynein to RNA, viral particles, and nuclei. The BicD2-mediated interaction between the nucleus and dynein is implicated in mitosis, interkinetic nuclear migration (INM) in radial glial progenitor cells, and neuron precursor migration during embryonic neocortex development. In vitro studies involving full-length cargo adaptors are difficult to perform due to the hydrophobic character, low-expression levels, and intrinsic flexibility of cargo adaptors. Here, we report the recombinant production of full-length human BicD2 and confirm its biochemical activity by interaction studies with RanBP2. We also describe pH-dependent conformational changes of BicD2 using cryoelectron microscopy (cryo-EM), template-free structure predictions, and biophysical tools. Our results will help define the biochemical parameters for the in vitro reconstitution of higher-order BicD2 protein complexes.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Humanos , Dineínas/metabolismo , Complejo Dinactina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo
7.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30460895

RESUMEN

The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol. Here we present three Rea1 cryoEM structures. We visualise the Rea1 engine, a hexameric ring of AAA+ domains, and identify an α-helical bundle of AAA2 as a major ATPase activity regulator. The α-helical bundle interferes with nucleotide-induced conformational changes that create a docking site for the substrate binding MIDAS domain on the AAA +ring. Furthermore, we reveal the architecture of the Rea1 linker, which is involved in force generation and extends from the AAA+ ring. The data presented here provide insights into the mechanism of one of the most complex ribosome maturation factors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Adenosina Trifosfato/química , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Fenómenos Biomecánicos , Clonación Molecular , Microscopía por Crioelectrón , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Modelos Moleculares , Biogénesis de Organelos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/enzimología , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
8.
Nat Struct Mol Biol ; 19(5): 492-7, S1, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22426545

RESUMEN

Dyneins power the beating of cilia and flagella, transport various intracellular cargos and are necessary for mitosis. All dyneins have a ∼300-kDa motor domain consisting of a ring of six AAA+ domains. ATP hydrolysis in the AAA+ ring drives the cyclic relocation of a motile element, the linker domain, to generate the force necessary for movement. How the linker interacts with the ring during the ATP hydrolysis cycle is not known. Here we present a 3.3-Šcrystal structure of the motor domain of Saccharomyces cerevisiae cytoplasmic dynein, crystallized in the absence of nucleotides. The linker is docked to a conserved site on AAA5, which is confirmed by mutagenesis as functionally necessary. Nucleotide soaking experiments show that the main ATP hydrolysis site in dynein (AAA1) is in a low-nucleotide affinity conformation and reveal the nucleotide interactions of the other three sites (AAA2, AAA3 and AAA4).


Asunto(s)
Dineínas/química , Proteínas Fúngicas/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Dineínas/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
9.
PLoS One ; 6(8): e23231, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826242

RESUMEN

Lipopolysaccharide (LPS) is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS). Based on the presence of a single Mg²âº ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg²âº ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Å and provide evidence that two Mg²âº ions are part of the active site of the enzyme.


Asunto(s)
Lipopolisacáridos/metabolismo , Magnesio/metabolismo , Nucleotidiltransferasas/metabolismo , Citidina Trifosfato/metabolismo , Cinética , Estructura Molecular
10.
J Biol Chem ; 284(33): 22248-22262, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19546212

RESUMEN

The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable Kdo transferase WaaA from A. aeolicus and provide evidence that the enzyme is monofunctional. Compositional analysis and mass spectrometry of purified A. aeolicus LPS, showing the incorporation of a single Kdo residue as an integral component of the LPS, implicated a monofunctional Kdo transferase in LPS biosynthesis of A. aeolicus. Further, heterologous expression of the A. aeolicus waaA gene in a newly constructed Escherichia coli DeltawaaA suppressor strain resulted in synthesis of lipid IVA precursors substituted with one Kdo sugar. When highly purified WaaA of A. aeolicus was subjected to in vitro assays using mass spectrometry for detection of the reaction products, the enzyme was found to catalyze the transfer of only a single Kdo residue from CMP-Kdo to differently modified lipid A acceptors. The Kdo transferase was capable of utilizing a broad spectrum of acceptor substrates, whereas surface plasmon resonance studies indicated a high selectivity for the donor substrate.


Asunto(s)
Bacterias/metabolismo , Transferasas/química , Transferasas/fisiología , Carbohidratos/química , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lípidos/química , Lipopolisacáridos/química , Modelos Biológicos , Nucleotidiltransferasas/metabolismo , Salmonella/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Resonancia por Plasmón de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA