Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900972

RESUMEN

X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase, ALAS2, which encodes the first enzyme in heme biosynthesis. A related sideroblastic anemia is due to mutations in SLC25A38, which supplies mitochondrial glycine for ALAS2 (SLC25A38-CSA). The lack of viable animal models has limited studies on the pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knock-in mouse models that recapitulate the main features of XLSA and XLPP, and, using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP porphyria, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ -thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis-related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.

2.
PLoS Genet ; 19(9): e1010906, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37703303

RESUMEN

Fluctuating environments threaten fertility and viability. To better match the immediate, local environment, many organisms adopt alternative phenotypic states, a phenomenon called "phenotypic plasticity." Natural populations that predictably encounter fluctuating environments tend to be more plastic than conspecific populations that encounter a constant environment, suggesting that phenotypic plasticity can be adaptive. Despite pervasive evidence of such "adaptive phenotypic plasticity," gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors. To test this hypothesis, we exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is determined epigenetically: only a subset of genetically identical individuals enter diapause and this diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is highly polygenic, that is, distinct suites of alleles mediate diapause plasticity across distinct genotypes, we also investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically, we asked if these histone marks were similarly depleted in diapause of a genotypically distinct line. We found evidence of divergence in both the gene expression program and histone mark abundance. This study reveals chromatin determinants of phenotypic plasticity and suggests that these determinants may be genotype-dependent, offering new insight into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating environments.


Asunto(s)
Diapausa , Drosophila melanogaster , Femenino , Animales , Drosophila melanogaster/genética , Metilación , Histonas/genética , Procesamiento Proteico-Postraduccional
3.
Mol Biol Evol ; 40(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220650

RESUMEN

Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.


Asunto(s)
Inversión Cromosómica , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple , América del Norte
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536336

RESUMEN

Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/genética , Drosophilidae/genética , Especies Introducidas , Animales , Cambio Climático , Drosophila melanogaster/fisiología , Drosophilidae/fisiología , Dinámica Poblacional , Estaciones del Año
5.
Theor Appl Genet ; 136(1): 18, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36680594

RESUMEN

To assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001-2002 to 2020-2021 in multi-locations trials. In such a series of trials, yield may increase over time due to (i) genetic improvement (genetic trend) and (ii) improved management or favorable climate change (agronomic/non-genetic trend). In both the winter and monsoon seasons, we observed positive genetic and non-genetic trends. The annual genetic trend for grain yield in both winter and monsoon rice varieties was 0.01 t ha-1, while the non-genetic trend for both seasons was 0.02 t ha-1, corresponding to yearly genetic gains of 0.28% and 0.18% in winter and monsoon seasons, respectively. The overall percentage yield change from 1970 until 2020 for winter rice was 40.96%, of which 13.91% was genetic trend and 27.05% was non-genetic. For the monsoon season, the overall percentage change from 1973 until 2020 was 38.39%, of which genetic and non-genetic increases were 8.36% and 30.03%, respectively. Overall, the contribution of non-genetic trend is larger than genetic trend both for winter and monsoon seasons. These results suggest that limited progress has been made in improving yield in Bangladeshi rice breeding programs over the last 50 years. Breeding programs need to be modernized to deliver sufficient genetic gains in the future to sustain Bangladeshi food security.


Asunto(s)
Oryza , Oryza/genética , Bangladesh , Fitomejoramiento , Grano Comestible/genética , Agricultura , Estaciones del Año
6.
PLoS Genet ; 16(11): e1009110, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33216740

RESUMEN

Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.


Asunto(s)
Aclimatación/genética , Evolución Biológica , Diapausa de Insecto/genética , Drosophila melanogaster/fisiología , Transcriptoma/fisiología , Alelos , Altitud , Animales , Clima , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos/genética , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , América del Norte , Sitios de Carácter Cuantitativo , Estaciones del Año , Análisis Espacio-Temporal , Zambia
7.
Am J Hum Genet ; 105(5): 947-958, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668704

RESUMEN

Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.


Asunto(s)
Anemia/genética , Trastorno Autístico/genética , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Homeostasis/genética , Proteínas/genética , Animales , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Genotipo , Heterocigoto , Humanos , Hierro , Masculino , Fenotipo
8.
Proc Natl Acad Sci U S A ; 116(40): 20025-20032, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527278

RESUMEN

Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.


Asunto(s)
Adaptación Biológica , Drosophila melanogaster/fisiología , Genoma , Genómica , Microbiota , Animales , Evolución Biológica , Frecuencia de los Genes , Genética de Población , Genómica/métodos , Densidad de Población , Selección Genética
9.
J Vet Med Educ ; : e20220011, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35617609

RESUMEN

Surgical skills are an important competency for new graduates. Simulators offer a means to train and assess veterinary students prior to their first surgical performance. A simulated ovariohysterectomy (OVH) rubric's validity was evaluated using a framework of content evidence, internal structure evidence, and evidence of relationship with other variables, specifically subsequent live surgical performance. Clinically experienced veterinarians (n = 13) evaluated the utility of each rubric item to collect evidence; each item's content validity index was calculated to determine its inclusion in the final rubric. After skills training, veterinary students (n = 57) were assessed using the OVH model rubric in March and August. Internal structure evidence was collected by video-recording 14 students' mock surgeries, each assessed by all five raters to calculate inter-rater reliability. Relationship with other variables evidence was collected by assessing 22 students performing their first live canine OVH in November. Experienced veterinarians included 22 items in the final rubric. The rubric generated scores with good to excellent internal consistency; inter-rater reliability was fair. Students' performance on the March model assessment was moderately correlated with their live surgical performance (ρ = 0.43) and moderately negatively correlated with their live surgical time (ρ = -0.42). Students' performance on the August model assessment, after a summer without surgical skills practice, was weakly correlated with their live surgical performance (ρ = 0.17). These data support validation of the simulated OVH rubric. The continued development of validated assessment instruments is critical as veterinary medicine seeks to become competency based.

10.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413142

RESUMEN

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Variación Estructural del Genoma , Microbiota , Selección Genética , Aclimatación/genética , Altitud , Animales , Virus ADN , Drosophila melanogaster/virología , Europa (Continente) , Genoma Mitocondrial , Haplotipos , Virus de Insectos , Masculino , Filogeografía , Polimorfismo de Nucleótido Simple
11.
Mol Ecol ; 30(12): 2817-2830, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33914989

RESUMEN

The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Aclimatación , Adaptación Fisiológica/genética , Alelos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Factores de Transcripción Forkhead/genética , Variación Genética , Masculino , Polimorfismo Genético , Estados Unidos
12.
FASEB J ; 34(9): 11672-11684, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32667087

RESUMEN

Testosterone stimulates iron-dependent erythropoiesis and suppresses hepcidin. To clarify the role of iron in mediating testosterone's effects on erythropoiesis, we induced iron deficiency in mice by feeding low iron diet. Iron-replete and iron-deficient mice were treated weekly with testosterone propionate or vehicle for 3 weeks. Testosterone treatment increased red cell count in iron-replete mice, but, surprisingly, testosterone reduced red cell count in iron-deficient mice. Splenic stress erythropoiesis was stimulated in iron-deficient mice relative to iron-replete mice, and further increased by testosterone treatment, as indicated by the increase in red pulp area, the number of nucleated erythroblasts, and expression levels of TfR1, GATA1, and other erythroid genes. Testosterone treatment of iron-deficient mice increased the ratio of early-to-late erythroblasts in the spleen and bone marrow, and serum LDH level, consistent with ineffective erythropoiesis. In iron-deficient mice, erythropoietin levels were higher but erythropoietin-regulated genes were generally downregulated relative to iron-replete mice, suggesting erythropoietin resistance. Conclusion: Testosterone treatment stimulates splenic stress erythropoiesis in iron-replete as well as iron-deficient mice. However, testosterone worsens anemia in iron-deficient mice because of ineffective erythropoiesis possibly due to erythropoietin resistance associated with iron deficiency. Iron plays an important role in mediating testosterone's effects on erythropoiesis.


Asunto(s)
Anemia Ferropénica/metabolismo , Eritropoyesis/efectos de los fármacos , Deficiencias de Hierro , Testosterona/administración & dosificación , Andrógenos/administración & dosificación , Anemia Ferropénica/sangre , Anemia Ferropénica/genética , Animales , Eritroblastos/citología , Eritroblastos/efectos de los fármacos , Eritroblastos/metabolismo , Recuento de Eritrocitos , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Eritropoyesis/genética , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Expresión Génica/efectos de los fármacos , Hierro/fisiología , Ratones Endogámicos C57BL , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
13.
Am J Hematol ; 96(2): 251-257, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33180328

RESUMEN

ß-thalassemias result from mutations in ß-globin, causing ineffective erythropoiesis and secondary iron overload due to inappropriately low levels of the iron regulatory hormone hepcidin. Mutations in transferrin receptor 2 (TFR2) lead to hereditary hemochromatosis (HH) as a result of inappropriately increased iron uptake from the diet, also due to improperly regulated hepcidin. TFR2 is also thought to be required for efficient erythropoiesis through its interaction with the erythropoietin receptor in erythroid progenitors. Transmembrane serine protease 6 (TMPRSS6), a membrane serine protease expressed selectively in the liver, participates in regulating hepcidin production in response to iron stores by cleaving hemojuvelin (HJV). We have previously demonstrated that inhibiting TMPRSS6 expression with a hepatocyte-specific siRNA formulation, induces hepcidin, mitigates anemia, and reduces iron overload in murine models of ß-thalassemia intermedia and HH. Here, we demonstrate that Tmprss6 siRNA treatment of double mutant Tfr2Y245X/Y245X HH Hbbth3/+ thalassemic mice induces hepcidin and diminishes tissue and serum iron levels. Importantly, treated double mutant animals produce more mature red blood cells and have a nearly 50% increase in hemoglobin compared to untreated ß-thalassemic mice. Furthermore, we also show that treatment of Tfr2Y245X/Y245X HH mice leads to increased hepcidin expression and reduced total body iron burden. These data indicate that siRNA suppression of Tmprss6, in conjunction with the targeting of TFR2, may be superior to inhibiting Tmprss6 alone in the treatment of the anemia and secondary iron loading in ß-thalassemia intermedia and may be useful as a method of suppressing the primary iron overload in TFR2-related (type 3) hereditary hemochromatosis.


Asunto(s)
Hemocromatosis/metabolismo , Deficiencias de Hierro , Receptores de Transferrina/deficiencia , Talasemia beta/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Hemocromatosis/genética , Hemocromatosis/patología , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación Missense , Receptores de Transferrina/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Talasemia beta/genética , Talasemia beta/patología
14.
Nervenarzt ; 92(4): 349-358, 2021 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-33399923

RESUMEN

BACKGROUND: In the clinical management of patients with multiple sclerosis (MS), the challenge is to make an early diagnosis and initiate adequate treatment of neurogenic disorders of the lower urinary tract (NLUTD). Various national guidelines provide practical recommendations which are sometimes discordant. OBJECTIVE: To develop a simple evidence-based algorithm for detecting NLUTD in patients with MS that could be taken as a principle for deriving therapeutic consequences. MATERIAL AND METHODS: A prospective multicenter study was initiated as a direct result of two multidisciplinary conferences. The aim was to identify statistically and clinically relevant parameters for the routine diagnosis of NLUTD in patients with MS. Urodynamic abnormalities served as the gold standard. At three subsequent consensus conferences, the results of the study were discussed, a diagnostic algorithm was developed and consensus was reached on a first-line treatment. RESULTS AND DISCUSSION: The proposed algorithm enables the detection of NLUTD in patients with MS with the help of four statistically significant predictors: 1) the residual urine volume, 2) the number of urinary tract infections (UTI) within the last 6 months, 3) the standardized micturition frequency and 4) the presence/absence of urinary incontinence. The newly developed algorithm has proved to be efficient with the following results: approximately 75% of the patients do not need a urodynamic examination for a first-line treatment decision. In 25% of cases, urodynamic examinations are essential for an adequate treatment decision. Routine assessments include the patient medical history, residual urine volume measurement, a micturition diary and a uroflowmetry (optional).


Asunto(s)
Esclerosis Múltiple , Enfermedades Urológicas , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico , Estudios Prospectivos , Urodinámica
15.
J Vet Med Educ ; 48(5): 573-583, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33226907

RESUMEN

Veterinary dental cleaning prevents and treats periodontal disease, one of the most common diagnoses in small animal practice. Students learn to perform dental cleaning through deliberate practice, which can be gained through working on models. This study compared educational outcomes after students (n = 36) were randomized to practice on one of three dental cleaning models: a low-fidelity ceramic tile, a mid-fidelity three-dimensional (3D) printed canine skull model, or a high-fidelity canine head model. Students provided survey feedback about their model and later performed a dental cleaning on a canine cadaver head while being video-recorded. Experts (n = 10) provided feedback on each model. Experts agreed that all models were suitable for teaching dental cleaning, but the 3D skull and full head models were more suitable for assessing student skill (p = .002). Students were also more positive about the realism and features of those two models compared to the tile model. Students practicing on each of the models were equally effective at removing calculus from the cadavers' teeth. Students who learned on the tile model were a median of 4 minutes slower to remove calculus from their cadaver's teeth than students who trained on the canine head model. Although students may be more accepting of the 3D skull and full head models, all three models were equally effective at teaching the skill. Experts approved all models for teaching, but recommended the 3D skull or full head model if student skills were to be assessed. Low-fidelity models remain effective training tools with comparable learning outcomes.


Asunto(s)
Educación en Veterinaria , Animales , Competencia Clínica , Humanos , Aprendizaje , Informe de Investigación , Estudiantes
16.
Mol Ecol ; 29(3): 639-653, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31863671

RESUMEN

Organisms are locally adapted when members of a population have a fitness advantage in one location relative to conspecifics in other geographies. For example, across latitudinal gradients, some organisms may trade off between traits that maximize fitness components in one, but not both, of somatic maintenance or reproductive output. Latitudinal gradients in life history strategies are traditionally attributed to environmental selection on an animal's genotype, without any consideration of the possible impact of associated microorganisms ("microbiota") on life history traits. Here, we show in Drosophila melanogaster, a key model for studying local adaptation and life history strategy, that excluding the microbiota from definitions of local adaptation is a major shortfall. First, we reveal that an isogenic fly line reared with different bacteria varies the investment in early reproduction versus somatic maintenance. Next, we show that in wild fruit flies, the abundance of these same bacteria was correlated with the latitude and life history strategy of the flies, suggesting geographic specificity of the microbiota composition. Variation in microbiota composition of locally adapted D. melanogaster could be attributed to both the wild environment and host genetic selection. Finally, by eliminating or manipulating the microbiota of fly lines collected across a latitudinal gradient, we reveal that host genotype contributes to latitude-specific life history traits independent of the microbiota and that variation in the microbiota can suppress or reverse the differences between locally adapted fly lines. Together, these findings establish the microbiota composition of a model animal as an essential consideration in local adaptation.


Asunto(s)
Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Microbiota/genética , Adaptación Fisiológica/genética , Animales , Femenino , Rasgos de la Historia de Vida , Fenotipo
17.
Am J Hematol ; 95(5): 492-496, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31990410

RESUMEN

Reduced ferrochelatase activity in erythropoietic protoporphyria (EPP) causes the accumulation of protoporphyrin IX (PPIX) leading to acute cutaneous photosensitivity and liver injury. Many EPP patients also have a mild hypochromic, microcytic anemia and iron deficiency. Iron deficiency can lead to decreased PPIX accumulation in another erythropoietic porphyria, congenital erythropoietic porphyria (CEP). Expression of the iron regulatory peptide hepcidin is negatively regulated by the serine protease TMPRSS6. Hepcidin induction by siRNA-mediated inhibition of TMPRSS6 expression reduces iron availability and induces iron deficiency. To interrogate the therapeutic potential of iron deficiency to modify EPP, we treated an ethylnitrosourea-induced mouse model of EPP, Fech m1Pas , with a GalNAc-conjugated Tmprss6 siRNA and PPIX levels, anemia and iron parameters were monitored. The GalNAc-RNAi therapeutic reduces Tmprss6 expression and induces mild iron deficiency in Fech m1Pas animals. However, decreases in erythrocyte PPIX levels and liver PPIX accumulation were not seen. These results indicate short-term induction of iron deficiency, at least in a murine model of EPP, does not lead to decreased PPIX production.


Asunto(s)
Anemia Ferropénica/etiología , Protoporfiria Eritropoyética/complicaciones , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Fenotipo
18.
BMC Vet Res ; 16(1): 221, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605566

RESUMEN

BACKGROUND: The Cumberland Gap Region (CGR) of the United States is a natural corridor between the southeastern, northeastern, and midwestern regions of the country. CGR has also many species of ticks and mosquitos that serve as competent vectors for important animal and human pathogens. In this study, we tested dogs from six different animal shelters in the CGR for Rocky Mountain spotted fever (RMSF), anaplasmosis, Lyme disease, canine ehrlichiosis and canine heartworm disease. RESULTS: Sera from 157 shelter dogs were tested for antibodies to RMSF agent, Rickettsia rickettsii, using an indirect immunofluorescence assay. Sixty-six dogs (42.0%) were positive for either IgM or IgG, or both IgM and IgG antibodies to R. rickettsii. Moreover, the same set of sera (n = 157) plus an and additional sera (n = 75) from resident dogs at the same shelters were tested using the SNAP 4Dx Plus. Of 232 dogs tested, two (0.9%) were positive for antibodies to Anaplasma phagocytophilum/A. platys, nine (3.9%) were positive for antibodies to Borrelia burgdorferi, 23 (9.9%) for positive for antibodies to Ehrlichia canis/E. ewingii, and 13 (5.6%) were positive for Dirofilaria immitis antigen. Co-infection with two or more etiologic agents was detected in five animals. Three dogs had antibodies to both B. burgdorferi and E. canis/E. ewingii, and two dogs were positive for D. immitis antigen and antibodies to B. burgdorferi and E. canis/E. ewingii. CONCLUSIONS: Shelter dogs in the CGR are exposed to a number of important vector-borne pathogens. Further studies are required to ascertain the roles these animals play in maintenance and transmission of these pathogens.


Asunto(s)
Coinfección/veterinaria , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/parasitología , Enfermedades Transmitidas por Vectores/veterinaria , Anaplasma/inmunología , Anaplasma/aislamiento & purificación , Anaplasmosis/sangre , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Helmínticos/sangre , Región de los Apalaches/epidemiología , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/aislamiento & purificación , Coinfección/epidemiología , Dirofilaria immitis/inmunología , Dirofilaria immitis/aislamiento & purificación , Dirofilariasis/sangre , Enfermedades de los Perros/epidemiología , Perros , Ehrlichia/inmunología , Ehrlichia/aislamiento & purificación , Ehrlichiosis/sangre , Ehrlichiosis/veterinaria , Femenino , Enfermedad de Lyme/sangre , Enfermedad de Lyme/veterinaria , Masculino , Rickettsia rickettsii/inmunología , Rickettsia rickettsii/aislamiento & purificación , Fiebre Maculosa de las Montañas Rocosas/sangre , Fiebre Maculosa de las Montañas Rocosas/veterinaria , Estudios Seroepidemiológicos , Enfermedades Transmitidas por Vectores/sangre
19.
Proc Natl Acad Sci U S A ; 114(46): E9932-E9941, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087300

RESUMEN

Most natural populations are affected by seasonal changes in temperature, rainfall, or resource availability. Seasonally fluctuating selection could potentially make a large contribution to maintaining genetic polymorphism in populations. However, previous theory suggests that the conditions for multilocus polymorphism are restrictive. Here, we explore a more general class of models with multilocus seasonally fluctuating selection in diploids. In these models, the multilocus genotype is mapped to fitness in two steps. The first mapping is additive across loci and accounts for the relative contributions of heterozygous and homozygous loci-that is, dominance. The second step uses a nonlinear fitness function to account for the strength of selection and epistasis. Using mathematical analysis and individual-based simulations, we show that stable polymorphism at many loci is possible if currently favored alleles are sufficiently dominant. This general mechanism, which we call "segregation lift," requires seasonal changes in dominance, a phenomenon that may arise naturally in situations with antagonistic pleiotropy and seasonal changes in the relative importance of traits for fitness. Segregation lift works best under diminishing-returns epistasis, is not affected by problems of genetic load, and is robust to differences in parameters across loci and seasons. Under segregation lift, loci can exhibit conspicuous seasonal allele-frequency fluctuations, but often fluctuations may be small and hard to detect. An important direction for future work is to formally test for segregation lift in empirical data and to quantify its contribution to maintaining genetic variation in natural populations.


Asunto(s)
Epistasis Genética , Aptitud Genética , Modelos Teóricos , Polimorfismo Genético , Selección Genética , Alelos , Simulación por Computador , Diploidia , Frecuencia de los Genes , Flujo Genético , Heterogeneidad Genética , Carga Genética , Sitios Genéticos , Variación Genética , Genotipo , Heterocigoto , Homocigoto , Modelos Genéticos , Fenotipo , Estaciones del Año
20.
Haematologica ; 104(7): 1342-1354, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630985

RESUMEN

Ncoa4 mediates autophagic degradation of ferritin, the cytosolic iron storage complex, to maintain intracellular iron homeostasis. Recent evidence also supports a role for Ncoa4 in systemic iron homeostasis and erythropoiesis. However, the specific contribution and temporal importance of Ncoa4-mediated ferritinophagy in regulating systemic iron homeostasis and erythropoiesis is unclear. Here, we show that Ncoa4 has a critical role in basal systemic iron homeostasis and both cell autonomous and non-autonomous roles in murine erythropoiesis. Using an inducible murine model of Ncoa4 knockout, acute systemic disruption of Ncoa4 impaired systemic iron homeostasis leading to tissue ferritin and iron accumulation, a decrease in serum iron, and anemia. Mice acutely depleted of Ncoa4 engaged the Hif2a-erythropoietin system to compensate for anemia. Mice with targeted deletion of Ncoa4 specifically in the erythroid compartment developed a pronounced anemia in the immediate postnatal stage, a mild hypochromic microcytic anemia at adult stages, and were more sensitive to hemolysis with higher requirements for the Hif2a-erythropoietin axis and extramedullary erythropoiesis during recovery. These studies demonstrate the importance of Ncoa4-mediated ferritinophagy as a regulator of systemic iron homeostasis and define the relative cell autonomous and non-autonomous contributions of Ncoa4 in supporting erythropoiesis in vivo.


Asunto(s)
Anemia/patología , Eritropoyesis , Homeostasis , Hierro/metabolismo , Coactivadores de Receptor Nuclear/fisiología , Anemia/metabolismo , Animales , Autofagia , Femenino , Hemólisis , Humanos , Células K562 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA