Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Psychiatry ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604525

RESUMEN

BACKGROUND: High levels of infant negative emotionality (NE) and low positive emotionality (PE) predict future emotional and behavioral problems. The prefrontal cortex (PFC) supports emotional regulation, with each PFC subregion specializing in specific emotional processes. Neurite orientation dispersion and density imaging estimates microstructural integrity and myelination via the neurite density index (NDI) and dispersion via the orientation dispersion index (ODI), with potential to more accurately evaluate microstructural alterations in the developing brain. Yet, no study has used these indices to examine associations between PFC microstructure and concurrent or developing infant emotionality. METHODS: We modeled PFC subregional NDI and ODI at 3 months with caregiver-reported infant NE and PE at 3 months (n = 61) and at 9 months (n = 50), using multivariable and subsequent bivariate regression models. RESULTS: The most robust statistically significant findings were positive associations among 3-month rostral anterior cingulate cortex (ACC) ODI and caudal ACC NDI and concurrent NE, a positive association between 3-month lateral orbitofrontal cortex ODI and prospective NE, and a negative association between 3-month dorsolateral PFC ODI and concurrent PE. Multivariate models also revealed that other PFC subregional microstructure measures, as well as infant and caregiver sociodemographic and clinical factors, predicted infant 3- and 9-month NE and PE. CONCLUSIONS: Greater NDI and ODI, reflecting greater microstructural complexity, in PFC regions supporting salience perception (rostral ACC), decision making (lateral orbitofrontal cortex), action selection (caudal ACC), and attentional processes (dorsolateral PFC) might result in greater integration of these subregions with other neural networks and greater attention to salient negative external cues, thus higher NE and/or lower PE. These findings provide potential infant cortical markers of future psychopathology risk.

2.
Transl Psychiatry ; 13(1): 125, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069146

RESUMEN

High levels of infant negative emotionality (NE) are associated with emotional and behavioral problems later in childhood. Identifying neural markers of high NE as well as low positive emotionality (PE) in infancy can provide neural markers to aid early identification of vulnerability, and inform interventions to help delay or even prevent psychiatric disorders before the manifestation of symptoms. Prefrontal cortical (PFC) subregions support the regulation of NE and PE, with each PFC subregion differentially specializing in distinct emotional regulation processes. Gray matter (GM) volume measures show good test-retest reliability, and thus have potential use as neural markers of NE and PE. Yet, while studies showed PFC GM structural abnormalities in adolescents and young adults with affective disorders, few studies examined how PFC subregional GM measures are associated with NE and PE in infancy. We aimed to identify relationships among GM in prefrontal cortical subregions at 3 months and caregiver report of infant NE and PE, covarying for infant age and gender and caregiver sociodemographic and clinical variables, in two independent samples at 3 months (Primary: n = 75; Replication sample: n = 40) and at 9 months (Primary: n = 44; Replication sample: n = 40). In the primary sample, greater 3-month medial superior frontal cortical volume was associated with higher infant 3-month NE (p < 0.05); greater 3-month ventrolateral prefrontal cortical volume predicted lower infant 9-month PE (p < 0.05), even after controlling for 3-month NE and PE. GM volume in other PFC subregions also predicted infant 3- and 9-month NE and PE, together with infant demographic factors, caregiver age, and/or caregiver affective instability and anxiety. These findings were replicated in the independent sample. To our knowledge, this is the first study to determine in primary and replication samples associations among infant PFC GM volumes and concurrent and prospective NE and PE, and identify promising, early markers of future psychopathology risk.


Asunto(s)
Emociones , Sustancia Gris , Adolescente , Adulto Joven , Humanos , Lactante , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Estudios Prospectivos , Reproducibilidad de los Resultados , Emociones/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología , Imagen por Resonancia Magnética
3.
Biol Psychiatry ; 94(1): 57-67, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918062

RESUMEN

BACKGROUND: Elucidating the neural basis of infant positive emotionality and negative emotionality can identify biomarkers of pathophysiological risk. Our goal was to determine how functional interactions among large-scale networks supporting emotional regulation influence white matter (WM) microstructural-emotional behavior relationships in 3-month-old infants. We hypothesized that microstructural-emotional behavior relationships would be differentially mediated or suppressed by underlying resting-state functional connectivity (rsFC), particularly between default mode network and central executive network structures. METHODS: The analytic sample comprised primary caregiver-infant dyads (52 infants [42% female, mean age at scan = 15.10 weeks]), with infant neuroimaging and emotional behavior assessments conducted at 3 months. Infant WM and rsFC were assessed by diffusion-weighted imaging/tractography and resting-state magnetic resonance imaging during natural, nonsedated sleep. The Infant Behavior Questionnaire-Revised provided measures of infant positive emotionality and negative emotionality. RESULTS: After significant WM-emotional behavior relationships were observed, multimodal analyses were performed using whole-brain voxelwise mediation. Results revealed that greater cingulum bundle volume was significantly associated with lower infant positive emotionality (ß = -0.263, p = .031); however, a pattern of lower rsFC between central executive network and default mode network structures suppressed this otherwise negative relationship. Greater uncinate fasciculus volume was significantly associated with lower infant negative emotionality (ß = -0.296, p = .022); however, lower orbitofrontal cortex-amygdala rsFC suppressed this otherwise negative relationship, while greater orbitofrontal cortex-central executive network rsFC mediated this relationship. CONCLUSIONS: Functional interactions among neural networks have an important influence on WM microstructural-emotional behavior relationships in infancy. These relationships can elucidate neural mechanisms that contribute to future behavioral and emotional problems in childhood.


Asunto(s)
Sustancia Blanca , Humanos , Lactante , Femenino , Masculino , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Redes Neurales de la Computación , Vías Nerviosas
4.
Metabolites ; 12(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36144286

RESUMEN

We use a non-invasive MRI proxy of neurovascular function (pnvf) to assess the ability of the vasculature to supply baseline metabolic demand, to compare pediatric and young adult congenital heart disease (CHD) patients to normal referents and relate the proxy to neurocognitive outcomes and nitric oxide bioavailability. In a prospective single-center study, resting-state blood-oxygen-level-dependent (BOLD) and arterial spin labeling (ASL) MRI scans were successfully obtained from 24 CHD patients (age = 15.4 ± 4.06 years) and 63 normal referents (age = 14.1 ± 3.49) years. Pnvf was computed on a voxelwise basis as the negative of the ratio of functional connectivity strength (FCS) estimated from the resting-state BOLD acquisition to regional cerebral blood flow (rCBF) as estimated from the ASL acquisition. Pnvf was used to predict end-tidal CO2 (PETCO2) levels and compared to those estimated from the BOLD data. Nitric oxide availability was obtained via nasal measurements (nNO). Pnvf was compared on a voxelwise basis between CHD patients and normal referents and correlated with nitric oxide availability and neurocognitive outcomes as assessed via the NIH Toolbox. Pnvf was shown as highly predictive of PETCO2 using theoretical modeling. Pnvf was found to be significantly reduced in CHD patients in default mode network (DMN, comprising the ventromedial prefrontal cortex and posterior cingulate/precuneus), salience network (SN, comprising the insula and dorsal anterior cingulate), and central executive network (CEN, comprising posterior parietal and dorsolateral prefrontal cortex) regions with similar findings noted in single cardiac ventricle patients. Positive correlations of Pnvf in these brain regions, as well as the hippocampus, were found with neurocognitive outcomes. Similarly, positive correlations between Pnvf and nitric oxide availability were found in frontal DMN and CEN regions, with particularly strong correlations in subcortical regions (putamen). Reduced Pnvf in CHD patients was found to be mediated by nNO. Mediation analyses further supported that reduced Pnvf in these regions underlies worse neurocognitive outcome in CHD patients and is associated with nitric oxide bioavailability. Impaired neuro-vascular function, which may be non-invasively estimated via combined arterial-spin label and BOLD MR imaging, is a nitric oxide bioavailability dependent factor implicated in adverse neurocognitive outcomes in pediatric and young adult CHD.

5.
Front Neurosci ; 16: 952355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466162

RESUMEN

Objective: Term congenital heart disease (CHD) neonates display abnormalities of brain structure and maturation, which are possibly related to underlying patient factors, abnormal physiology and perioperative insults. Our primary goal was to delineate associations between clinical factors and postnatal brain microstructure in term CHD neonates using diffusion tensor imaging (DTI) magnetic resonance (MR) acquisition combined with complementary data-driven connectome and seed-based tractography quantitative analyses. Our secondary goal was to delineate associations between mild dysplastic structural brain abnormalities and connectome and seed-base tractography quantitative analyses. These mild dysplastic structural abnormalities have been derived from prior human infant CHD MR studies and neonatal mouse models of CHD that were collectively used to calculate to calculate a brain dysplasia score (BDS) that included assessment of subcortical structures including the olfactory bulb, the cerebellum and the hippocampus. Methods: Neonates undergoing cardiac surgery for CHD were prospectively recruited from two large centers. Both pre- and postoperative MR brain scans were obtained. DTI in 42 directions was segmented into 90 regions using a neonatal brain template and three weighted methods. Clinical data collection included 18 patient-specific and 9 preoperative variables associated with preoperative scan and 6 intraoperative (e.g., cardiopulmonary bypass and deep hypothermic circulatory arrest times) and 12 postoperative variables associated with postoperative scan. We compared patient specific and preoperative clinical factors to network topology and tractography alterations on a preoperative neonatal brain MRI, and intra and postoperative clinical factors to network topology alterations on postoperative neonatal brain MRI. A composite BDS was created to score abnormal findings involving the cerebellar hemispheres and vermis, supratentorial extra-axial fluid, olfactory bulbs and sulci, hippocampus, choroid plexus, corpus callosum, and brainstem. The neuroimaging outcomes of this study included (1) connectome metrics: cost (number of connections) and global/nodal efficiency (network integration); (2) seed based tractography methods of fractional anisotropy (FA), radial diffusivity, and axial diffusivity. Statistics consisted of multiple regression with false discovery rate correction (FDR) comparing the clinical risk factors and BDS (including subcortical components) as predictors/exposures and the global connectome metrics, nodal efficiency, and seed based- tractography (FA, radial diffusivity, and axial diffusivity) as neuroimaging outcome measures. Results: A total of 133 term neonates with complex CHD were prospectively enrolled and 110 had analyzable DTI. Multiple patient-specific factors including d-transposition of the great arteries (d-TGA) physiology and severity of impairment of fetal cerebral substrate delivery (i.e., how much the CHD lesion alters typical fetal circulation such that the highest oxygen and nutrient rich blood from the placenta are not directed toward the fetal brain) were predictive of preoperative reduced cost (p < 0.0073) and reduced global/nodal efficiency (p < 0.03). Cardiopulmonary bypass time predicted postoperative reduced cost (p < 0.04) and multiple postoperative factors [extracorporeal membrane oxygenation (ECMO), seizures and cardiopulmonary resuscitation (CPR)] were predictive of postoperative reduced cost and reduced global/nodal efficiency (p < 0.05). Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. Total BDS was not predictive of brain network topology. However, key subcortical components of the BDS score did predict key global and nodal network topology: abnormalities of the cerebellum predicted reduced cost (p < 0.0417) and of the hippocampus predicted reduced global efficiency (p < 0.0126). All three subcortical structures predicted unique alterations of nodal efficiency (p < 0.05), including hippocampal abnormalities predicting widespread reduced nodal efficiency in all lobes of the brain, cerebellar abnormalities predicting increased prefrontal nodal efficiency, and olfactory bulb abnormalities predicting posterior parietal-occipital nodal efficiency. Conclusion: Patient-specific (d-TGA anatomy, preoperative impairment of fetal cerebral substrate delivery) and postoperative (e.g., seizures, need for ECMO, or CPR) clinical factors were most predictive of diffuse postnatal microstructural dysmaturation in term CHD neonates. Anthropometric measurements (weight, length, and head size) predicted tractography outcomes. In contrast, subcortical components (cerebellum, hippocampus, olfactory) of a structurally based BDS (derived from CHD mouse mutants), predicted more localized and regional postnatal microstructural differences. Collectively, these findings suggest that brain DTI connectome and seed-based tractography are complementary techniques which may facilitate deciphering the mechanistic relative contribution of clinical and genetic risk factors related to poor neurodevelopmental outcomes in CHD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA