Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Med Microbiol Immunol ; 209(6): 681-691, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918599

RESUMEN

Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.


Asunto(s)
Repetición de Anquirina , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/inmunología , VIH/aislamiento & purificación , Inmunoterapia Adoptiva , Depleción Linfocítica/métodos , Péptidos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Relación Dosis-Respuesta Inmunológica , Evaluación Preclínica de Medicamentos , Gammaretrovirus/genética , Vectores Genéticos/genética , Células HEK293 , Infecciones por VIH/virología , Humanos , Activación de Linfocitos , Péptidos/química , Anticuerpos de Cadena Única/inmunología , Transducción Genética
2.
PLoS Pathog ; 12(6): e1005641, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27281338

RESUMEN

Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Lentivirus/genética , Virus Nipah/genética , Internalización del Virus , Animales , Western Blotting , Línea Celular , Citometría de Flujo , Glicoproteínas/metabolismo , Humanos , Microscopía Electrónica , Transducción Genética , Proteínas del Envoltorio Viral/metabolismo
3.
Blood ; 122(12): 2030-8, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23884859

RESUMEN

Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.


Asunto(s)
Arterias , Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hígado , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Línea Celular , Endoglina , Eritropoyetina/genética , Eritropoyetina/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos del Hígado/metabolismo , Lentivirus/genética , Ratones , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción Genética
4.
Blood ; 120(22): 4334-42, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22898597

RESUMEN

Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Citotoxicidad Inmunológica/genética , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/fisiología , Células Cultivadas , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Células HEK293 , Humanos , Inmunoterapia Adoptiva/métodos , Células Jurkat , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Neoplasias/genética , Especificidad de Órganos/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nat Methods ; 7(11): 929-35, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935652

RESUMEN

We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105(+) endothelial cells, human CD133(+) hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133(+) cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.


Asunto(s)
Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Neuronas/metabolismo , Antígeno AC133 , Animales , Antígenos CD/genética , Antígenos CD20/genética , Células Cultivadas , Glicoproteínas/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Receptores AMPA/genética
6.
Antib Ther ; 4(2): 90-100, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34169228

RESUMEN

BACKGROUND: CD3-based bispecific T cell engagers (bsTCEs) are one of the most promising bispecific antibodies for effective cancer treatments. To elicit target-specific T cell-mediated cytotoxicity, these bsTCEs contain at least one binding unit directed against a tumor antigen and another binding unit targeting CD3 in T cell receptor complex. Development of CD3-based bsTCEs, however, has been severely hampered by dose-limiting toxicities due to cytokine release syndrome. To address this limitation, we developed a novel functionally trivalent T cell engager (t-TCE) antibody containing affinity-reduced CD3 binding unit positioned to ensure monovalent CD3 engagement, in combination with bivalent tumor antigen binding of carcinoembryonic antigen (CEA). METHODS: We modeled the variable region of anti-CD3 in the complementarity-determining regions of the heavy chain and obtained CD3 binders with reduced binding affinity. Two optimized versions CEA/CD3-v1 and CEA/CD3-v2 were identified and generated in tetravalent format, characterized and compared in vitro and in vivo for functional activity. RESULTS: Our lead candidate, CEA/CD3-v2, demonstrated subnanomolar binding and picomolar potency against a panel of CEA-expressing cancer cell lines. In addition, we detected reduced T cell cytokine release with potent cytotoxic activity. Our t-TCE CEA/CD3-v2 molecule demonstrated strong antitumor effect in a dose-dependent manner in human peripheral blood mononuclear cell (PBMC) xenograft model. Furthermore, combination of CEA/CD3-v2 with atezolizumab provided synergistic antitumor effect. CONCLUSIONS: Because of its effective tumor cell killing in vitro and in vivo with reduced cytokine release, CEA/CD3 bsTCE may greatly benefit in CEA-positive cancer immunotherapy.

8.
Blood Adv ; 4(22): 5702-5715, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33216892

RESUMEN

Genetic modification of T lymphocytes is a key issue in research and therapy. Conventional lentiviral vectors (LVs) are neither selective for T cells nor do they modify resting or minimally stimulated cells, which is crucial for applications, such as efficient in vivo modification of T lymphocytes. Here, we introduce novel CD3-targeted LVs (CD3-LVs) capable of genetically modifying human T lymphocytes without prior activation. For CD3 attachment, agonistic CD3-specific single-chain variable fragments were chosen. Activation, proliferation, and expansion mediated by CD3-LVs were less rapid compared with conventional antibody-mediated activation owing to lack of T-cell receptor costimulation. CD3-LVs delivered genes not only selectively into T cells but also under nonactivating conditions, clearly outperforming the benchmark vector vesicular stomatitis-LV glycoproteins under these conditions. Remarkably, CD3-LVs were properly active in gene delivery even when added to whole human blood in absence of any further stimuli. Upon administration of CD3-LV into NSG mice transplanted with human peripheral blood mononuclear cells, efficient and exclusive transduction of CD3+ T cells in all analyzed organs was achieved. Finally, the most promising CD3-LV successfully delivered a CD19-specific chimeric antigen receptor (CAR) into T lymphocytes in vivo in humanized NSG mice. Generation of CAR T cells was accompanied by elimination of human CD19+ cells from blood. Taken together, the data strongly support implementation of T-cell-activating properties within T-cell-targeted vector particles. These particles may be ideally suited for T-cell-specific in vivo gene delivery.


Asunto(s)
Vectores Genéticos , Lentivirus , Animales , Lentivirus/genética , Leucocitos Mononucleares , Ratones , Linfocitos T , Transducción Genética
9.
Comb Chem High Throughput Screen ; 11(2): 99-110, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18336203

RESUMEN

Retroviruses distinguish themselves from all other mammalian viruses by their abilities to infect and propagate in mammalian cells without causing a cytopathic effect and to stably integrate their genetic information into the genome of the host cell. These unique properties make them an ideal platform for the display and directed evolution of proteins in a mammalian cell environment. This review will describe the essentials about retrovirus biology and then discuss in detail display and screening strategies that have been developed during the past 15 years of retroviral display technology.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Retroviridae/genética , Animales , Biblioteca de Genes , Vectores Genéticos , Humanos , Proteínas/química , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
10.
Biotechnol J ; 13(3): e1700345, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29131519

RESUMEN

Virus-like particles (VLPs) displaying foreign antigens have become an important tool in vaccination including the induction of immune responses against self-antigens. Claudin 6 (CLDN6) has been identified as tumor-associated antigen and is therefore a potential target for tumor vaccination strategies. However, as tetra-membrane spanning protein its incorporation into VLPs while preserving a native fold is challenging. Here, we attempted the incorporation of a panel of engineered CLDN6 variants into the membrane of retrovirus-derived VLPs. Interestingly, wild-type CLDN6 revealed the most efficient display. VLPs presenting CLDN6 or CLDN9 derived from different donor species were produced and preservation of their native confirmation was demonstrated by antibody binding assays. VLPs displaying murine CLDN6 were used to immunize mice. Antibodies recognizing native CLDN6 as displayed on cell surfaces and mediating complement-dependent cytotoxicity were elicited in vaccinated animals. The data suggest applications of CLDN6 displaying VLPs in cancer immunotherapy.


Asunto(s)
Claudinas/inmunología , Inmunoterapia , Neoplasias/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Claudinas/genética , Claudinas/uso terapéutico , Humanos , Ratones , Neoplasias/prevención & control , Neoplasias/terapia , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico , Proteínas del Envoltorio Viral/genética
11.
Oncotarget ; 9(16): 12971-12981, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29560124

RESUMEN

Classical Hodgkin lymphoma (cHL) is a hematopoietic malignancy with a characteristic cellular composition. The tumor mass is made up of infiltrated lymphocytes and other cells of hematologic origin but only very few neoplastic cells that are mainly identified by the diagnostic marker CD30. While most patients with early stage cHL can be cured by standard therapy, treatment options for relapsed or refractory cHL are still not sufficient, although immunotherapy-based approaches for the treatment of cHL patients have gained ground in the last decade. Here, we suggest a novel therapeutic concept based on oncolytic viruses selectively destroying the CD30+-positive cHL tumor cells. Relying on a recently described CD30-specific scFv we have generated CD30-targeted measles virus (MV-CD30) and vesicular stomatitis virus (VSV-CD30). For VSV-CD30 the VSV glycoprotein G reading frame was replaced by those of the CD30-targeted MV glycoproteins. Both viruses were found to be highly selective for CD30-positive cells as demonstrated by infection of co-cultures of target and non-target cells as well as through blocking infection by soluble CD30. Notably, VSV-CD30 yielded much higher titers than MV-CD30 and resulted in a more rapid and efficient killing of cultivated cHL-derived cell lines. Mouse tumor models revealed that intratumorally, as well as systemically injected VSV-CD30, infected cHL xenografts and significantly slowed down tumor growth resulting in a substantially prolonged survival of tumor-bearing mice. Taken together, the data support further preclinical testing of VSV-CD30 as novel therapeutic agent for the treatment of cHL and other CD30+-positive malignancies.

12.
Mol Ther Methods Clin Dev ; 10: 128-143, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30101151

RESUMEN

Delivering genes selectively to the therapeutically relevant cell type is among the prime goals of vector development. Here, we present a high-throughput selection and screening process that identifies designed ankyrin repeat proteins (DARPins) optimally suited for receptor-targeted gene delivery using adeno-associated viral (AAV) and lentiviral (LV) vectors. In particular, the process includes expression, purification, and in situ biotinylation of the extracellular domains of target receptors as Fc fusion proteins in mammalian cells and the selection of high-affinity binders by ribosome display from DARPin libraries each covering more than 1012 variants. This way, DARPins specific for the glutamate receptor subunit GluA4, the endothelial surface marker CD105, and the natural killer cell marker NKp46 were generated. The identification of DARPins best suited for gene delivery was achieved by screening small-scale vector productions. Both LV and AAV particles displaying the selected DARPins transduced only cells expressing the corresponding target receptor. The data confirm that a straightforward process for the generation of receptor-targeted viral vectors has been established. Moreover, biochemical analysis of a panel of DARPins revealed that their functional cell-surface expression as fusion proteins is more relevant for efficient gene delivery by LV particles than functional binding affinity.

13.
Biomaterials ; 144: 84-94, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28825979

RESUMEN

We have established a novel approach for the covalent coupling of large polypeptides to the surface of fully assembled adeno-associated viral gene transfer vector (AAV) particles via split-intein mediated protein-trans-splicing (PTS). This way, we achieved selective gene transfer to distinct cell types. Single-chain variable fragments (scFvs) or designed ankyrin repeat proteins (DARPins), exhibiting high-affinity binding to cell surface receptors selectively expressed on the surface of target cells, were coupled to AAV particles harboring mutations in the capsid proteins which ablate natural receptor usage. Both, the AAV capsid protein VP2 and multiple separately produced targeting ligands recognizing Her2/neu, EpCAM, CD133 or CD30 were genetically fused with complementary split-intein domains. Optimized coupling conditions led to an effective conjugation of each targeting ligand to the universal AAV capsid and translated into specific gene transfer into target receptor-positive cell types in vitro and in vivo. Interestingly, PTS-based AAVs exhibited significantly less gene transfer into target receptor-negative cells than AAVs displaying the same targeting ligand but coupled genetically. Another important consequence of the PTS technology is the possibility to now display scFvs or other antibody-derived domain formats harboring disulfide-bonds in a functionally active form on the surface of AAV particles. Hence, the custom combination of a universal AAV vector particle and targeting ligands of various formats allows for an unprecedented flexibility in the generation of gene transfer vectors targeted to distinct cell types.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Virión/genética , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Vectores Genéticos , Células HEK293 , Humanos , Inteínas , Ligandos , Trans-Empalme , Transducción Genética
14.
Stem Cells Dev ; 25(9): 729-39, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26956718

RESUMEN

Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.


Asunto(s)
Terapia Genética , Vectores Genéticos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno Ki-1/metabolismo , Lentivirus/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Reprogramación Celular , Células Clonales , Humanos , Transducción Genética
15.
Protein Eng Des Sel ; 28(4): 93-106, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25715658

RESUMEN

An increasing number of applications require the expression of single-chain variable fragments (scFv) fusion proteins in mammalian cells at the cell surface membrane. Here we assessed the CD30-specific scFv HRS3, which is used in immunotherapy, for its ability to retarget lentiviral vectors (LVs) to CD30 and to mediate selective gene transfer into CD30-positive cells. Fused to the C-terminus of the type-II transmembrane protein hemagglutinin (H) of measles virus and expressed in LV packaging cells, gene transfer mediated by the released LV particles was inefficient. A series of point mutations in the scFv framework regions addressing its biophysical properties, which substantially improved production and increased the melting temperature without impairing its kinetic binding behavior to CD30, also improved the performance of LV particles. Gene transfer into CD30-positive cells increased ∼100-fold due to improved transport of the H-scFv protein to the plasma membrane. Concomitantly, LV particle aggregation and syncytia formation in packaging cells were substantially reduced. The data suggest that syncytia formation can be triggered by trans-cellular dimerization of H-scFv proteins displayed on adjacent cells. Taken together, we show that the biophysical properties of the targeting ligand have a decisive role for the gene transfer efficiency of receptor-targeted LVs.


Asunto(s)
Técnicas de Transferencia de Gen , Fragmentos de Inmunoglobulinas/química , Inmunoterapia , Antígeno Ki-1/química , Anticuerpos de Cadena Única/química , Animales , Línea Celular , Vectores Genéticos , Humanos , Hibridomas , Fragmentos de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/inmunología , Antígeno Ki-1/genética , Antígeno Ki-1/inmunología , Lentivirus/genética , Ligandos , Ratones , Pliegue de Proteína , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
16.
Virus Res ; 180: 43-8, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24368277

RESUMEN

Differences in fusion activity between measles virus (MV) attenuated, oncolytic strain MV(NSe) and pathogenic MV(wt323) are reflected in amino acid 94 of the fusion (F) proteins. A valine 94 in F(NSe) (naturally) or F(wt323) (introduced) correlated with enhanced cell-cell fusion activity during transient glycoprotein expression or recombinant MV infections irrespective of the strains' targeted receptors, whereas the reverse effect was found for methionine 94. Enhanced fusogenicity was determined by weaker glycoprotein interaction and correlated positively with cytotoxicity in both virus strains. Amino acid 94 of F can be used to tailor fusogenicity and cytotoxicity of recombinant MV, while the cellular receptor triggering fusion is not decisive.


Asunto(s)
Sustitución de Aminoácidos , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Proteínas Virales de Fusión/genética , Internalización del Virus , Animales , Fusión Celular , Supervivencia Celular , Chlorocebus aethiops , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células Vero , Proteínas Virales de Fusión/metabolismo
17.
Virology ; 413(2): 149-52, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21470651

RESUMEN

The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.


Asunto(s)
Antígenos CD/metabolismo , Hemaglutininas/metabolismo , Activación de Linfocitos , Virus del Sarampión/metabolismo , Proteína Cofactora de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Regulación Viral de la Expresión Génica/fisiología , Técnicas de Transferencia de Gen , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Hemaglutininas/genética , Humanos , Lentivirus , Sustancias Luminiscentes , Mutación , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Linfocitos T/metabolismo , Proteínas Virales de Fusión/genética
18.
Virology ; 418(2): 85-92, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21835422

RESUMEN

The R peptide in the cytoplasmic tail (C-tail) of γ-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in γ-retrovirus infected cells.


Asunto(s)
Eliminación de Gen , Regulación Viral de la Expresión Génica/fisiología , Oligopéptidos/metabolismo , Retroviridae/clasificación , Retroviridae/genética , Animales , Línea Celular , Humanos , Oligopéptidos/genética , Virus Reordenados/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA