Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(8): 3869-3882, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355131

RESUMEN

In this study, we propose a novel long short-term memory (LSTM) neural network model that leverages color features (HSV: hue, saturation, value) extracted from street images to estimate air quality with particulate matter (PM) in four typical European environments: urban, suburban, villages, and the harbor. To evaluate its performance, we utilize concentration data for eight parameters of ambient PM (PM1.0, PM2.5, and PM10, particle number concentration, lung-deposited surface area, equivalent mass concentrations of ultraviolet PM, black carbon, and brown carbon) collected from a mobile monitoring platform during the nonheating season in downtown Augsburg, Germany, along with synchronized street view images. Experimental comparisons were conducted between the LSTM model and other deep learning models (recurrent neural network and gated recurrent unit). The results clearly demonstrate a better performance of the LSTM model compared with other statistically based models. The LSTM-HSV model achieved impressive interpretability rates above 80%, for the eight PM metrics mentioned above, indicating the expected performance of the proposed model. Moreover, the successful application of the LSTM-HSV model in other seasons of Augsburg city and various environments (suburbs, villages, and harbor cities) demonstrates its satisfactory generalization capabilities in both temporal and spatial dimensions. The successful application of the LSTM-HSV model underscores its potential as a versatile tool for the estimation of air pollution after presampling of the studied area, with broad implications for urban planning and public health initiatives.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Memoria a Corto Plazo , Contaminación del Aire/análisis , Redes Neurales de la Computación , Carbono
2.
Part Fibre Toxicol ; 19(1): 61, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109745

RESUMEN

BACKGROUND: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution. OBJECTIVE: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. METHODS: A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. RESULTS: The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 µg hr-1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. CONCLUSIONS: Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Carbono , Humanos , Filipinas , Sistema Respiratorio , Hollín/análisis , Hollín/toxicidad , Transportes , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad , Adulto Joven
3.
Environ Sci Technol ; 55(1): 160-168, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291866

RESUMEN

The study investigates the spatial pattern of black carbon (BC) at a high spatial resolution in Augsburg, Germany. Sixty two walks were performed to assess the concentrations of equivalent black carbon (eBC), ultraviolet particulate matter (UVPM), and equivalent brown carbon (eBrC) in different seasons and at different times of the day with a mobile platform (i.e., trolley). Along with BC measurements, images of street microenvironments were recorded. Meteorological parameters, including temperature, relative humidity, and wind speed, were monitored. The BC concentrations showed significant spatial heterogeneity and diurnal variations peaking in the morning and at night. The highest BC concentrations were observed near dense traffic. The correlations between BC and street views (buildings, roads, cars, and vegetation) were weak but highly significant. Moreover, meteorological factors also influenced the BC concentration. A model based on street view images and meteorological data was developed to examine the driving factors of the spatial variability of BC concentrations at a higher spatial resolution as different microenvironments based on traffic density. The best results were obtained for UVPM and eBC (71 and 70% explained variability). eBrC (53%), to which other sources besides road traffic can also make significant contributions, is modeled less well.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Carbono , Monitoreo del Ambiente , Alemania , Material Particulado/análisis , Hollín/análisis , Emisiones de Vehículos/análisis
4.
Nature ; 514(7521): 218-22, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25231863

RESUMEN

Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Aerosoles/química , Biomasa , China , Ciudades , Monitoreo del Ambiente , Combustibles Fósiles , Humanos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Salud Pública , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
5.
Environ Res ; 186: 109587, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668546

RESUMEN

Exceeding the maximum levels for environmental pollutants creates public and scientific interest for the environmental and human health impact it may have. In Northern Italy, the Po Valley, and in particular the Veneto region, is still a hotspot for air quality improvement. Several monitoring campaigns were carried out in this area to acquire information about sources of pollutants which are considered critical. For the first time, a deep study of the aerosol organic fraction was performed in the town Sernaglia della Battaglia, nearby Treviso. During three seasons of 2017, PM1 and PM2.5 samples were collected simultaneously. Organic molecular markers have been analyzed by in-situ derivatization thermal desorption gas chromatography time-of-flight mass spectrometry (IDTD-GC-TOFMS). Alkanes, polycyclic aromatic hydrocarbons, oxi-polycyclic aromatic hydrocarbons, anhydrous sugars, resins acids, triterpenoids, and acids were considered. The organic chemical composition has been analyzed based on seasonal variation and source contributions. Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) have been combined to deeply investigate the main sources of particulate organic matter. On the one hand, PCA evaluates the correlations between the organic markers and their seasonal distribution. On the other hand, the source contributions to aerosol composition are estimated by PMF. Four main emission sources were found by PMF: solid fuel combustion (coal, wood), combustion of petroleum distillates (gas and fuel oil) and exhaust gases of vehicles, industrial combustion processes, home heating, and forest fires are evaluated as the most important sources for the air quality and pollution in this municipality of Northern Italy.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Humanos , Italia , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Análisis de Componente Principal , Estaciones del Año
6.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539833

RESUMEN

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Daño del ADN , Exposición por Inhalación/efectos adversos , Picea/química , Pinus/química , Humo/efectos adversos , Madera , Células A549 , Aerosoles , Contaminantes Atmosféricos/análisis , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Calefacción , Humanos , Exposición por Inhalación/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tamaño de la Partícula , Células RAW 264.7 , Humo/análisis , Especificidad de la Especie , Transcriptoma/efectos de los fármacos
7.
Environ Sci Technol ; 53(5): 2881-2891, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30730710

RESUMEN

Growing literature has documented varying toxic potencies of source- or site-specific fine particulate matter (PM2.5), as opposed to the practice that treats particle toxicities as independent of composition given the incomplete understanding of the toxicity of the constituents. Quantifying component-specific contribution is the key to unlocking the geographical disparities of particle toxicity from a mixture perspective. In this study, we performed integrated mixture-toxicity experiments and modeling to quantify the contribution of metals and polycyclic aromatic hydrocarbons (PAHs), two default culprit component groups of PM2.5 toxicity, to in vitro oxidative stress caused by wintertime PM2.5 from Beijing and Guangzhou, two megacities in China. PM2.5 from Beijing exhibited greater toxic potencies at equal mass concentrations. The targeted chemical analysis revealed higher burden of metals and PAHs per unit mass of PM2.5 in Beijing. These chemicals together explained 38 and 24% on average of PM2.5-induced reactive oxygen species in Beijing and Guangzhou, respectively, while >60% of the effects remained to be resolved in terms of contributing chemicals. PAHs contributed approximately twice the share of the PM2.5 mixture effects as metals. Fe, Cu, and Mn were the dominant metals, constituting >80% of the metal-shared proportion of the PM2.5 effects. Dibenzo[ a, l]pyrene alone explained >65% of the PAH-shared proportion of the PM2.5 toxicity effects. The significant contribution from coal combustion and vehicular emissions in Beijing suggested the major source disparities of toxicologically active PAHs between the two cities. Our study provided novel quantitative insights into the role of varying toxic component profiles in shaping the differential toxic potencies of city-specific PM2.5 pollution.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Beijing , China , Ciudades , Monitoreo del Ambiente , Estrés Oxidativo , Material Particulado , Estaciones del Año
8.
Environ Sci Technol ; 52(8): 4979-4988, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29517225

RESUMEN

Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , Esmog
9.
Environ Sci Technol ; 50(7): 3425-34, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26900965

RESUMEN

Primary biological organic aerosols (PBOA) represent a major component of the coarse organic matter (OMCOARSE, aerodynamic diameter > 2.5 µm). Although this fraction affects human health and the climate, its quantification and chemical characterization currently remain elusive. We present the first quantification of the entire PBOACOARSE mass and its main sources by analyzing size-segregated filter samples collected during the summer and winter at the rural site of Payerne (Switzerland), representing a continental Europe background environment. The size-segregated water-soluble OM was analyzed by a newly developed offline aerosol mass spectrometric technique (AMS). Collected spectra were analyzed by three-dimensional positive matrix factorization (3D-PMF), showing that PBOA represented the main OMCOARSE source during summer and its contribution to PM10 was comparable to that of secondary organic aerosol. We found substantial cellulose contributions to OMCOARSE, which in combination with gas chromatography mass spectrometry molecular markers quantification, underlined the predominance of plant debris. Quantitative polymerase chain reaction (qPCR) analysis instead revealed that the sum of bacterial and fungal spores mass represented only a minor OMCOARSE fraction (<0.1%). X-ray photoelectron spectroscopic (XPS) analysis of C and N binding energies throughout the size fractions revealed an organic N increase in the PM10 compared to PM1 consistent with AMS observations.


Asunto(s)
Aerosoles/análisis , Monitoreo del Ambiente/métodos , Microbiología del Aire , Carbohidratos/análisis , Carbohidratos/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas/métodos , Material Particulado/análisis , Reacción en Cadena de la Polimerasa , Población Rural , Estaciones del Año , Esporas Bacterianas/genética , Esporas Fúngicas/genética , Suiza
10.
Environ Sci Technol ; 49(14): 8408-15, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26114602

RESUMEN

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.


Asunto(s)
Carbono/análisis , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/análisis , Atmósfera , Beijing , Biomasa , Radioisótopos de Carbono/análisis , China , Carbón Mineral/análisis , Combustibles Fósiles/análisis , Estaciones del Año , Hollín/análisis
11.
Clin Sci (Lond) ; 126(3): 207-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23875733

RESUMEN

COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.


Asunto(s)
Modelos Animales de Enfermedad , Infiltración Neutrófila , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , Humo/efectos adversos , Humo/análisis , Fumar/efectos adversos , Fumar/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Femenino , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
12.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664406

RESUMEN

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

13.
Environ Pollut ; 316(Pt 1): 120529, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341825

RESUMEN

This study aimed to evaluate the levels and phenomenology of equivalent black carbon (eBC) at the city center of Augsburg, Germany (01/2018 to 12/2020). Furthermore, the potential health risk of eBC based on equivalent numbers of passively smoked cigarettes (PSC) was also evaluated, with special emphasis on the impact caused by the COVID19 lockdown restriction measures. As it could be expected, peak concentrations of eBC were commonly recorded in morning (06:00-8:00 LT) and night (19:00-22:00 LT) in all seasons, coinciding with traffic rush hours and atmospheric stagnation. The variability of eBC was highly influenced by diurnal variations in traffic and meteorology (air temperature (T), mixing-layer height (MLH), wind speed (WS)) across days and seasons. Furthermore, a marked "weekend effect" was evidenced, with an average eBC decrease of ∼35% due to lower traffic flow. During the COVID19 lockdown period, an average ∼60% reduction of the traffic flow resulted in ∼30% eBC decrease, as the health risks of eBC exposure was markedly reduced during this period. The implementation of a multilinear regression analysis allowed to explain for 53% of the variability in measured eBC, indicating that the several factors (e.g., traffic and meteorology) may contribute simultaneously to this proportion. Overall, this study will provide valuable input to the policy makers to mitigate eBC pollutant and its adverse effect on environment and human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Hollín/análisis , Medición de Riesgo , Carbono/análisis , Material Particulado/análisis , Contaminación del Aire/análisis
14.
Environ Int ; 179: 108169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688811

RESUMEN

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Gases , Humanos , Madera , Aerosoles y Gotitas Respiratorias , Aldehídos , Material Particulado/toxicidad , Humo/efectos adversos
15.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341831

RESUMEN

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Asunto(s)
Contaminantes Atmosféricos , Aceites Combustibles , Aerosoles , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Material Particulado/análisis , Azufre/análisis , Emisiones de Vehículos/análisis
17.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112925

RESUMEN

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Aerosoles/análisis , Anciano , Envejecimiento , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/análisis
18.
Nat Geosci ; 15(3): 196-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341076

RESUMEN

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

19.
Environ Int ; 166: 107366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763991

RESUMEN

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA