Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568131

RESUMEN

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/enzimología , Plasticidad Neuronal/fisiología , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Animales Modificados Genéticamente , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Drosophila , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/uso terapéutico
2.
J Neurosci ; 30(19): 6782-92, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20463240

RESUMEN

The diversity of protein isoforms arising from alternative splicing is thought to modulate fine-tuning of synaptic plasticity. Fragile X mental retardation protein (FMRP), a neuronal RNA binding protein, exists in isoforms as a result of alternative splicing, but the contribution of these isoforms to neural plasticity are not well understood. We show that two isoforms of Drosophila melanogaster FMRP (dFMR1) have differential roles in mediating neural development and behavior functions conferred by the dfmr1 gene. These isoforms differ in the presence of a protein interaction module that is related to prion domains and is functionally conserved between FMRPs. Expression of both isoforms is necessary for optimal performance in tests of short- and long-term memory of courtship training. The presence or absence of the protein interaction domain may govern the types of ribonucleoprotein (RNP) complexes dFMR1 assembles into, with different RNPs regulating gene expression in a manner necessary for establishing distinct phases of memory formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Memoria a Corto Plazo/fisiología , Memoria/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Ritmo Circadiano/fisiología , Análisis Mutacional de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Datos de Secuencia Molecular , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Isoformas de Proteínas/metabolismo , Conducta Sexual Animal/fisiología , Factores de Tiempo
3.
J Neurosci ; 30(28): 9510-22, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20631179

RESUMEN

Alzheimer's disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced.


Asunto(s)
Cognición/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Presenilinas/genética , Factores de Edad , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Cognición/efectos de los fármacos , Cortejo , Drosophila melanogaster , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Aprendizaje/efectos de los fármacos , Litio/farmacología , Masculino , Memoria/efectos de los fármacos , Cuerpos Pedunculados/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Presenilinas/metabolismo , Distribución Aleatoria , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
4.
Cell Mol Life Sci ; 67(17): 2991-3004, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20386952

RESUMEN

Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1-3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svr (PG33) mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides.


Asunto(s)
Proteínas de Drosophila/fisiología , Fenotipo , Estructura Terciaria de Proteína/fisiología , Proteínas/fisiología , Empalme Alternativo/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Componentes del Gen , Memoria/fisiología , Estructura Terciaria de Proteína/genética , Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Alas de Animales/anatomía & histología
5.
Biogerontology ; 11(3): 347-62, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20039205

RESUMEN

Fragile X syndrome afflicts 1 in 2,500 individuals and is the leading heritable cause of mental retardation worldwide. The overriding clinical manifestation of this disease is mild to severe cognitive impairment. Age-dependent cognitive decline has been identified in Fragile X patients, although it has not been fully characterized nor examined in animal models. A Drosophila model of this disease has been shown to display phenotypes bearing similarity to Fragile X symptoms. Most notably, we previously identified naive courtship and memory deficits in young adults with this model that appear to be due to enhanced metabotropic glutamate receptor (mGluR) signaling. Herein we have examined age-related cognitive decline in the Drosophila Fragile X model and found an age-dependent loss of learning during training. We demonstrate that treatment with mGluR antagonists or lithium can prevent this age-dependent cognitive impairment. We also show that treatment with mGluR antagonists or lithium during development alone displays differential efficacy in its ability to rescue naive courtship, learning during training and memory in aged flies. Furthermore, we show that continuous treatment during aging effectively rescues all of these phenotypes. These results indicate that the Drosophila model recapitulates the age-dependent cognitive decline observed in humans. This places Fragile X in a category with several other diseases that result in age-dependent cognitive decline. This demonstrates a role for the Drosophila Fragile X Mental Retardation Protein (dFMR1) in neuronal physiology with regard to cognition during the aging process. Our results indicate that misregulation of mGluR activity may be causative of this age onset decline and strengthens the possibility that mGluR antagonists and lithium may be potential pharmacologic compounds for counteracting several Fragile X symptoms.


Asunto(s)
Envejecimiento/psicología , Trastornos del Conocimiento/tratamiento farmacológico , Modelos Animales de Enfermedad , Animales , Animales Modificados Genéticamente , Conducta Animal , Drosophila , Femenino , Aprendizaje , Masculino , Memoria
6.
Front Behav Neurosci ; 10: 136, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445731

RESUMEN

Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.

7.
Front Pharmacol ; 4: 64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23720628

RESUMEN

Metabotropic glutamate receptors (mGluRs) have well-established roles in cognition and social behavior in mammals. Whether or not these roles have been conserved throughout evolution from invertebrate species is less clear. Mammals have eight mGluRs whereas Drosophila has a single DmGluRA, which has both Gi and Gq coupled signaling activity. We have utilized Drosophila to examine the role of DmGluRA in social behavior and various phases of memory. We have found that flies that are homozygous or heterozygous for loss of function mutations of DmGluRA have impaired social behavior in male Drosophila. Futhermore, flies that are heterozygous for loss of function mutations of DmGluRA have impaired learning during training, immediate-recall memory, short-term memory, and long-term memory as young adults. This work demonstrates a role for mGluR activity in both social behavior and memory in Drosophila.

8.
Brain Res ; 1380: 106-19, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21078304

RESUMEN

Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus. Here we examine the effects of chronic treatment of Fragile X mice in vivo with lithium or a group II mGluR antagonist on mGluR-LTD at CA1 synapses. We find that long-term lithium treatment initiated during development (5-6 weeks of age) and continued throughout the lifetime of the Fragile X mice until 9-11 months of age restores normal mGluR-LTD. Additionally, chronic short-term treatment beginning in adult Fragile X mice (8 weeks of age) with either lithium or an mGluR antagonist is also able to restore normal mGluR-LTD. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of Fragile X syndrome is an important advance, in that this identifies and validates these targets as potential therapeutic interventions for the treatment of individuals afflicted with Fragile X syndrome.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Compuestos de Litio/farmacología , Plasticidad Neuronal/efectos de los fármacos , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Compuestos de Litio/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/genética
9.
Behav Brain Res ; 196(2): 220-7, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18831990

RESUMEN

We present a 2-day water maze protocol that addresses some of potential confounds present in the water maze when using the aged subjects typical of studies of neurodegenerative disorders, such as Alzheimer's disease. This protocol is based on an initial series of training trials with a visible platform, followed by a memory test with a hidden platform 24h later. We validated this procedure using aged (15-18m) mice expressing three Alzheimer's disease-related transgenes, PS1(M146 V), APP(Swe), and tau(P301L). We also tested these triple transgenic mice (3xTG) and age and sex-matched wild-type (WT) in a behavioral battery consisting of tests of motor coordination (balance beam), spatial memory (object displacement task) visual acuity (novel object recognition task) and locomotor activity (open field). 3xTG mice had significantly longer escape latencies in the memory trial of the 2-day water maze test than WT and than their own baseline performance in the last visible platform trial. In addition, this protocol had improved sensitivity compared to a typical probe trial, since no significant differences between genotypes were evident in a probe trial conducted 24h after the final training trial. The 2-day procedure also resulted in good reliability between cohorts, and controlled for non-cognitive factors that can confound water maze assessments of memory, such as the significantly lower locomotor activity evident in the 3xTG mice. A further benefit of this method is that large numbers of animals can be tested in a short time.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Natación/psicología , Enfermedad de Alzheimer/genética , Animales , Femenino , Genotipo , Humanos , Masculino , Memoria/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Transgénicos , Actividad Motora/fisiología , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Reconocimiento en Psicología/fisiología , Reproducibilidad de los Resultados , Caracteres Sexuales , Percepción Espacial/fisiología , Agudeza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA