Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 607(7918): 256-259, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831603

RESUMEN

Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light years1. The nature of their progenitors and their emission mechanism remain open astrophysical questions2. Here we report the detection of the multicomponent FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components, with a significance of 6.5σ. The long (roughly 3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere3,4, as opposed to emission regions located further away from the star, as predicted by some models5.

2.
Eur J Nutr ; 58(1): 139-150, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29101532

RESUMEN

PURPOSE: The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS: MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS: Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS: In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Equol/farmacología , Isoflavonas/farmacología , Proteínas de Neoplasias/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Equol/metabolismo , Humanos , Isoflavonas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fitoestrógenos/metabolismo , Fitoestrógenos/farmacología , Reacción en Cadena de la Polimerasa , Regulación hacia Arriba/efectos de los fármacos
3.
Hum Mol Genet ; 25(3): 524-33, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620972

RESUMEN

Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Odorantes/análisis , Mucosa Olfatoria/metabolismo , Olfato/genética , Síndromes de Usher/genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Cilios/metabolismo , Cilios/patología , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Células Epiteliales/patología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mutación , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mucosa Olfatoria/patología , Transducción de Señal , Síndromes de Usher/metabolismo , Síndromes de Usher/patología
4.
Exp Dermatol ; 27(12): 1352-1360, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30252954

RESUMEN

The barrier function of the human epidermis is constantly challenged by environmental osmotic fluctuations. Hypotonic stress triggers cell swelling, which is counteracted by a compensatory mechanism called regulatory volume decrease (RVD) involving volume-regulated anion channels (VRACs). Recently, it was discovered that VRACs are composed of LRRC8 heteromers and that LRRC8A functions as the essential VRAC subunit in various mammalian cell types; however, the molecular identity of VRACs in the human epidermis remains to be determined. Here, we investigated the expression of LRRC8A and its role in hypotonic stress response of human keratinocytes. Immunohistological staining showed that LRRC8A is preferentially localized in basal and suprabasal epidermal layers. RNA sequencing revealed that LRRC8A is the most abundant subunit within the LRRC8 gene family in HaCaT cells as well as in primary normal human epidermal keratinocytes (NHEKs). To determine the contribution of LRRC8A to hypotonic stress response, we generated HaCaT- and NHEK-LRRC8A knockout cells by using CRISPR-Cas9. I- influx assays using halide-sensitive YFP showed that LRRC8A is crucially important for mediating VRAC activity in HaCaTs and NHEKs. Moreover, cell volume measurements using calcein-AM dye further revealed that LRRC8A also substantially contributes to RVD. In summary, our study provides new insights into hypotonic stress response and suggests an important role of LRRC8A as VRAC component in human keratinocytes.


Asunto(s)
Aniones/metabolismo , Epidermis/metabolismo , Queratinocitos/citología , Proteínas de la Membrana/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Fluoresceínas/química , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Queratinocitos/metabolismo , Osmorregulación , Ósmosis , Presión Osmótica , Multimerización de Proteína , Análisis de Secuencia de ARN
5.
Mol Cell Proteomics ; 14(8): 2072-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979994

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest family among mammalian membrane proteins and are capable of initiating numerous essential signaling cascades. Various GPCR-mediated pathways are organized into protein microdomains that can be orchestrated and regulated through scaffolding proteins, such as PSD-95/discs-large/ZO1 (PDZ) domain proteins. However, detailed binding characteristics of PDZ-GPCR interactions remain elusive because these interactions seem to be more complex than previously thought. To address this issue, we analyzed binding modalities using our established model system. This system includes the 13 individual PDZ domains of the multiple PDZ domain protein 1 (MUPP1; the largest PDZ protein), a broad range of murine olfactory receptors (a multifaceted gene cluster within the family of GPCRs), and associated olfactory signaling proteins. These proteins were analyzed in a large-scale peptide microarray approach and continuative interaction studies. As a result, we demonstrate that canonical binding motifs were not overrepresented among the interaction partners of MUPP1. Furthermore, C-terminal phosphorylation and distinct amino acid replacements abolished PDZ binding promiscuity. In addition to the described in vitro experiments, we identified new interaction partners within the murine olfactory epithelium using pull-down-based interactomics and could verify the partners through co-immunoprecipitation. In summary, the present study provides important insight into the complexity of the binding characteristics of PDZ-GPCR interactions based on olfactory signaling proteins, which could identify novel clinical targets for GPCR-associated diseases in the future.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteómica/métodos , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/metabolismo , Espectrometría de Masas , Proteínas de la Membrana , Ratones Transgénicos , Péptidos/metabolismo , Fosforilación , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína
6.
J Biol Chem ; 290(15): 9767-79, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713142

RESUMEN

Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis.


Asunto(s)
Cloruros/metabolismo , Neurogénesis/genética , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Immunoblotting , Transporte Iónico/genética , Masculino , Ratones Endogámicos , Ratones Noqueados , Microscopía Confocal , Odorantes , Mucosa Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Olfato , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Transcriptoma
7.
J Cell Sci ; 127(Pt 11): 2518-27, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24652834

RESUMEN

The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Mucosa Olfatoria/fisiología , Animales , Proteínas Portadoras/genética , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Dominios PDZ/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Receptores Odorantes/metabolismo , Transducción de Señal
8.
Arch Biochem Biophys ; 610: 8-15, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27693121

RESUMEN

Cells of the renal tubule system are in direct contact with compounds dissolved in the urine, such as short chain fatty acids (SCFA). Murine OR78, a member of the olfactory receptor (OR) family, is involved in SCFA-related regulation of renal blood pressure in mice. It is still unclear whether OR signaling has an impact on human renal physiology. In our study, we showed that OR51E1 and OR11H7, both of which can be activated by the SCFA isovaleric acid, are expressed in the HK-2 human proximal tubule cell line. We observed a transient increase in intracellular Ca2+ when isovaleric acid and 4-methylvaleric acid were added to HK-2 cells. The isovaleric acid-induced response was dependent on extracellular Ca2+ and adenylyl cyclase (AC) activation. Furthermore, we demonstrated that the canonical olfactory signaling components Gαolf and ACIII are co-localized with OR51E1. The number of cells responding to isovaleric acid correlated with the presence of primary cilia on HK-2 cells. OR51E1 protein expression was confirmed in the tubule system of human kidney tissue. Our study is the first to show the expression of ORs and olfactory signaling components in human kidney cells. Additionally, we discuss ORs as potential modulators of the renal physiology.


Asunto(s)
Regulación de la Expresión Génica , Túbulos Renales/metabolismo , Receptores Odorantes/metabolismo , Transducción de Señal , Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Línea Celular , Citosol/metabolismo , Hemiterpenos , Humanos , Inmunohistoquímica , Túbulos Renales/citología , Ligandos , Proteínas de Neoplasias/metabolismo , Ácidos Pentanoicos/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/metabolismo
9.
Chem Senses ; 41(4): 313-23, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839357

RESUMEN

Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , ARN/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Análisis de la Célula Individual
10.
ACS Nano ; 15(11): 18541-18556, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34739225

RESUMEN

Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from in silico to analytical and in vitro to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NPCis, Ø âˆ¼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged in vivo circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NPCis significantly (p < 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway via the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Cisplatino/farmacología , Medicina de Precisión , Resistencia a Antineoplásicos , Estudios Prospectivos , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Proteínas de la Membrana/metabolismo
11.
Cancers (Basel) ; 13(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638315

RESUMEN

Treatment success of head and neck cancers (HNSCC) is often hindered by tumor relapses due to therapy resistances. This study aimed at profiling cisplatin resistance mechanisms and identifying biomarkers potentially suitable as drug targets and for patient stratification. Bioinformatic analyses of suggested resistance factors in a cohort of 565 HNSCC patients identified the VRAC ion channel as a clinically relevant indicator for recurrent diseases following radiochemotherapy (p = 0.042). Other drug import/export transporters, such as CTR1, OCT1, or MRP1, were found to be less relevant. To experimentally verify VRAC's critical role for cisplatin resistance, we used CRISPR/Cas9 knockout resulting in cisplatin-resistant HNSCC cells, which could be resensitized by VRAC expression. Next-generation sequencing further underlined VRAC's importance and identified VRAC-regulated signaling networks, potentially also contributing to cisplatin resistance. CTR1, OCT1, or MRP1 did not contribute to increased cisplatin resistance. In addition to two-dimensional HNSCC models, three-dimensional tumor spheroid cultures confirmed VRAC's unique role for cisplatin sensitivity. Here, resistance correlated with DNA damage and downstream apoptosis. The cisplatin specificity of the identified VRAC pathway was verified by testing paclitaxel and doxorubicin. Our results were independently confirmed in naturally occurring, cisplatin-resistant HNSCC cancer cell models. Collectively, we here demonstrate VRAC's role for cisplatin resistance in HNSCC and its relevance as a potential drug target and/or prognostic biomarker for chemotherapy resistance.

12.
Cell Calcium ; 87: 102164, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014795

RESUMEN

Bridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells. Here, we addressed these issues for the time-lapse analysis of Ca2+ signaling in spheroids composed of human tongue-derived HTC-8 cells upon perfusion of gustatory substances. Live cell imaging setups for confocal and light sheet microscopy were developed that allow simple and robust spheroid stabilization and high-resolution microscopy with perfusion. Visualization of spheroids made of HTC-8 cells expressing the G-GECO fluorescent Ca2+ sensor revealed Ca2+ transients that showed similar kinetics but different amplitudes upon perfusion of bitter compounds Salicine and Saccharin. Dose-dependent responses to Saccharin required extracellular Ca2+. From the border towards the center of spheroids, compound-induced Ca2+ signals were progressively delayed and decreased in amplitude. Stimulation with ATP led to strong Ca2+ transients that were faster than those evoked by the bitter compounds and blockade of purinergic receptors with Suramin abutted the response to Saccharin, suggesting that ATP mediates a positive autocrine and paracrine feedback. Imaging of ATP-induced Ca2+ transients with light sheet microscopy allowed acquisition over a z-depth of 100 µm without losing spatial and temporal resolution. In summary, the presented approaches permit the study of fast cellular signaling in three-dimensional cultures upon compound perfusion.


Asunto(s)
Señalización del Calcio , Técnicas de Cultivo de Célula , Imagenología Tridimensional , Perfusión , Sacarina/farmacología , Lengua/citología , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular , Difusión , Humanos , Rodaminas/metabolismo , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos
13.
Front Mol Biosci ; 7: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154265

RESUMEN

Three-dimensional cell cultures, such as spheroids and organoids, serve as increasingly important models in fundamental and applied research and start to be used for drug screening purposes. Optical tissue clearing procedures are employed to enhance visualization of fluorescence-stained organs, tissues, and three-dimensional cell cultures. To get a more systematic overview about the effects and applicability of optical tissue clearing on three-dimensional cell cultures, we compared six different clearing/embedding protocols on seven types of spheroid- and chip-based three-dimensional cell cultures of approximately 300 µm in size that were stained with nuclear dyes, immunofluorescence, cell trackers, and cyan fluorescent protein. Subsequent whole mount confocal microscopy and semi-automated image analysis were performed to quantify the effects. Quantitative analysis included fluorescence signal intensity and signal-to-noise ratio as a function of z-depth as well as segmentation and counting of nuclei and immunopositive cells. In general, these analyses revealed five key points, which largely confirmed current knowledge and were quantified in this study. First, there was a massive variability of effects of different clearing protocols on sample transparency and shrinkage as well as on dye quenching. Second, all tested clearing protocols worked more efficiently on samples prepared with one cell type than on co-cultures. Third, z-compensation was imperative to minimize variations in signal-to-noise ratio. Fourth, a combination of sample-inherent cell density, sample shrinkage, uniformity of signal-to-noise ratio, and image resolution had a strong impact on data segmentation, cell counts, and relative numbers of immunofluorescence-positive cells. Finally, considering all mentioned aspects and including a wish for simplicity and speed of protocols - in particular, for screening purposes - clearing with 88% Glycerol appeared to be the most promising option amongst the ones tested.

14.
Front Cell Dev Biol ; 6: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30159312

RESUMEN

Cholinergic polymodal chemosensory cells in the mammalian urethra (urethral brush cells = UBC) functionally express the canonical bitter and umami taste transduction signaling cascade. Here, we aimed to determine whether UBC are functionally equipped for the perception of salt through ENaC (epithelial sodium channel). Cholinergic UBC were isolated from ChAT-eGFP reporter mice (ChAT = choline acetyltransferase). RT-PCR showed mRNA expression of ENaC subunits Scnn1a, Scnn1b, and Scnn1g in urethral epithelium and isolated UBC. Scnn1a could also be detected by next generation sequencing in 4/6 (66%) single UBC, two of them also expressed the bitter receptor Tas2R108. Strong expression of Scnn1a was seen in some urothelial umbrella cells and in 65% of UBC (30/46 cells) in a Scnn1a reporter mouse strain. Intracellular [Ca2+] was recorded in isolated UBC stimulated with the bitter substance denatonium benzoate (25 mM), ATP (0.5 mM) and NaCl (50 mM, on top of 145 mM Na+ and 153 mM Cl- baseline in buffer); mannitol (150 mM) served as osmolarity control. NaCl, but not mannitol, evoked an increase in intracellular [Ca2+] in 70% of the tested UBC. The NaCl-induced effect was blocked by the ENaC inhibitor amiloride (IC50 = 0.47 µM). When responses to both NaCl and denatonium were tested, all three possible positive response patterns occurred in a balanced distribution: 42% NaCl only, 33% denatonium only, 25% to both stimuli. A similar reaction pattern was observed with ATP and NaCl as test stimuli. About 22% of the UBC reacted to all three stimuli. Thus, NaCl evokes calcium responses in several UBC, likely involving an amiloride-sensitive channel containing α-ENaC. This feature does not define a new subpopulation of UBC, but rather emphasizes their polymodal character. The actual function of α-ENaC in cholinergic UBC-salt perception, homeostatic ion transport, mechanoreception-remains to be determined.

15.
Eur J Cell Biol ; 96(1): 34-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27939274

RESUMEN

Studies within the last decade have localized the functional expression of olfactory receptors (ORs) to cells outside of the olfactory epithelium. In human hepatocarcinoma and prostate cancer cells, the activation of ORs by odors modulates elementary physiological processes and leads to an inhibitory effect on proliferation. Cells of the respiratory tract are in direct contact with the surrounding air, in which a myriad of volatile molecules, especially odors, are present. Non-small-cell lung cancer (NSCLC) has a high prevalence, a high mortality rate and is difficult to treat. NSCLC cells are nearly resistant to common chemotherapeutic approaches, and surgical resection provides the only possible chance of a cure for most patients. New approaches for the treatment of NSCLC are the focus of many current studies. Thus, it is of interest to characterize the functional expression of ORs in cancer cells of the lung and to investigate the impact of ORs on pathophysiological processes. In the present study, we demonstrate that the expression of OR2J3 and cytosolic Ca2+ increase via the activation of the agonist helional in the NSCLC cell line A549. We further investigated the underlying pathway. Helional triggers phoshoinositol-3 kinase (PI3K), signaling the release of intracellular Ca2+ and phosphorylation of ERK. We observed that OR2J3 activation induces apoptosis and inhibits cell proliferation and migration in long-term stimulus experiments with helional. Our study provides the first evidence of the functional expression of an OR in NSCLC cells and its putative therapeutic impact.


Asunto(s)
Apoptosis , Señalización del Calcio , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Receptores Odorantes/agonistas , Receptores Odorantes/genética
16.
PLoS One ; 11(8): e0159640, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494699

RESUMEN

The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.


Asunto(s)
Estradiol/farmacología , Potenciales Evocados/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Progesterona/farmacología , Animales , Benzaldehídos/farmacología , AMP Cíclico/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Técnicas de Placa-Clamp , ARN/química , ARN/genética , ARN/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Análisis de Secuencia de ARN
17.
Front Cell Neurosci ; 10: 63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065801

RESUMEN

It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

18.
J Mol Endocrinol ; 57(3): 201-10, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27553203

RESUMEN

The secretion, motility and transport by intestinal tissues are regulated among others by specialized neuroendocrine cells, the so-called enterochromaffin (EC) cells. These cells detect different luminal stimuli, such as mechanical stimuli, fatty acids, glucose and distinct chemosensory substances. The EC cells react to the changes in their environment through the release of transmitter molecules, most importantly serotonin, to mediate the corresponding physiological response. However, little is known about the molecular targets of the chemical stimuli delivered from consumed food, spices and cosmetics within EC cells. In this study, we evaluated the expression of the olfactory receptor (OR) 2J3 in the human pancreatic EC cell line QGP-1 at the mRNA and protein levels. Using ratiofluorometric Ca(2+) imaging experiments, we demonstrated that the OR2J3-specific agonist helional induces a transient dose-dependent decrease in the intracellular Ca(2+) levels. This Ca(2+) decrease is mediated by protein kinase G (PKG) on the basis that the specific pharmacological inhibition of PKG with Rp-8-pCPT-cGMPS abolished the helional-induced Ca(2+) response. Furthermore, stimulation of QGP-1 cells with helional caused a dose-dependent release of serotonin that was comparable with the release induced by the application of a direct PKG activator (8-bromo-cGMP). Taken together, our results demonstrate that luminal odorants can be detected by specific ORs in QGP-1 cells and thus cause the directed release of serotonin and a PKG-dependent decrease in intracellular Ca(2.)


Asunto(s)
Calcio/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Serotonina/metabolismo , Transducción de Señal , Señalización del Calcio , Línea Celular , Células Cultivadas , Células Enterocromafines/metabolismo , Expresión Génica , Humanos , Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
19.
Front Physiol ; 7: 339, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27540365

RESUMEN

Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca(2+) increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.

20.
PLoS One ; 10(1): e0113170, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25590618

RESUMEN

The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.


Asunto(s)
Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Transcriptoma/fisiología , Animales , Femenino , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Transgénicos , Vías Olfatorias/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA