Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioconjug Chem ; 33(5): 956-968, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35442642

RESUMEN

The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-of-concept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new 89Zr-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t1/2 = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [89Zr]Zr-DFO-PEG5-Tz ([89Zr]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 ± 0.2 vs 17.1 ± 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for 89Zr-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía de Emisión de Positrones , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Circonio
2.
Eur J Nucl Med Mol Imaging ; 48(3): 694-707, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32889615

RESUMEN

PURPOSE: Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents. METHODS: Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially. RESULTS: [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates. CONCLUSION: DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET.


Asunto(s)
Quelantes , Radioisótopos , Animales , Línea Celular Tumoral , Deferoxamina , Ratones , Tomografía de Emisión de Positrones , Distribución Tisular , Circonio
3.
J Med Chem ; 66(17): 12130-12140, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37647220

RESUMEN

Brigatinib, a tyrosine kinase inhibitor (TKI) with specificity for gene rearranged anaplastic lymphoma kinase (ALK), such as the EML4-ALK, has shown a potential to inhibit mutated epidermal growth factor receptor (EGFR). In this study, N-desmethyl brigatinib was successfully synthesized as a precursor in five steps. Radiolabeling with [11C]methyl iodide produced [methylpiperazine-11C]brigatinib in a 10 ± 2% radiochemical yield, 91 ± 17 GBq/µmol molar activity, and ≥95% radiochemical purity in 49 ± 4 min. [Methylpiperazine-11C]brigatinib was evaluated in non-small cell lung cancer xenografted female nu/nu mice. An hour post-injection (p.i.), 87% of the total radioactivity in plasma originated from intact [methylpiperazine-11C]brigatinib. Significant differences in tumor uptake were observed between the endogenously EML4-ALK mutated H2228 and the control xenograft A549. The tumor-to-blood ratio in H2228 xenografts could be reduced by pretreatment with ALK inhibitor crizotinib. Tracer uptake in EGFR Del19 mutated HCC827 and EML4-ALK fusion A549 was not significantly different from uptake in A549 xenografts.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB/genética , Tomografía de Emisión de Positrones
4.
Nucl Med Biol ; 120-121: 108349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37209556

RESUMEN

INTRODUCTION: Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) that is able to inhibit the EGFR treatment resistance mutation T790M and primary EGFR mutations Del19 and L858R. The aim of the study was to evaluate the potential of carbon-11 labeled osimertinib to be used as a tracer for the PET imaging of tumors bearing the T790M mutation. METHODS: Osimertinib was labeled with carbon-11 at two positions, and the effect of the labeling position on the metabolism and biodistribution was studied in female nu/nu mice. The mutation status specificity of osimertinib was confirmed in vitro in a cell growth inhibition experiment, and the tumor-targeting potential of the carbon-11 isotopologues was evaluated using female nu/nu mice xenografted with NSCLC cell lines; the wild-type EGFR expressing A549, the primary Del19 EGFR mutated HCC827 and the resistance T790M/L858R mutated H1975. One of the osimertinib tracers was selected based on the results acquired and evaluated for tracer specificity and selectivity by assessment of tumor uptake in a PET study where HCC827 tumor-bearing mice were pretreated with osimertinib or afatinib. RESULTS: [Methylindole-11C]- and [dimethylamine-11C]osimertinib were synthesized by 11C-methylation of precursors AZ5104 and AZ7550, respectively. Rapid metabolism of both analogs of [11C]osimertinib was observed. Although the tumor uptake and retention of [methylindole-11C]- and [dimethylamine-11C]osimertinib in tumors were similar, the tumor-to-muscle ratios appeared to be higher for [methylindole-11C]osimertinib. The highest uptake, tumor-to-blood, and tumor-to-muscle ratio were observed in the Del19 EGFR mutated HCC827 tumors. However, the specificity and selectivity of [methylindole-11C]osimertinib PET could not be demonstrated in HCC827 tumors. The uptake of [methylindole-11C]osimertinib was not significantly higher in T790M resistance mutated H1975 xenografts compared to the negative control cell line A549. CONCLUSIONS: Osimertinib was successfully labeled at two positions with carbon-11, yielding two EGFR PET tracers, [methylindole-11C]osimertinib and [dimethylamine-11C]osimertinib. The preclinical evaluation demonstrated uptake and retention in three NSCLC xenografts; A549, HCC827, and H1975. The highest uptake was observed in the primary Del19 EGFR mutated HCC827. The ability of [methylindole-11C]osimertinib to distinguish between the T790M resistance mutated H1975 xenografts and the wild-type EGFR expressing A549 could not be confirmed in the ex vivo study.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Animales , Ratones , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Distribución Tisular , Inhibidores de Proteínas Quinasas/farmacología , Mutación , Resistencia a Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Compuestos de Anilina/farmacología
5.
J Med Chem ; 66(18): 12990-13006, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37712438

RESUMEN

Activated Abelson non-receptor tyrosine kinase (c-Abl) plays a harmful role in neurodegenerative conditions such as Parkinson's disease (PD). Inhibition of c-Abl is reported to have a neuroprotective effect and be a promising therapeutic strategy for PD. We have previously identified a series of benzo[d]thiazole derivatives as selective c-Abl inhibitors from which one compound showed high therapeutic potential. Herein, we report the development of a complementary positron emission tomography (PET) tracer. In total, three PET tracer candidates were developed and eventually radiolabeled with fluorine-18 for in vivo evaluation studies in mice. Candidate [18F]3 was identified as the most promising compound, since it showed sufficient brain uptake, good washout kinetics, and satisfactory metabolic stability. In conclusion, we believe this tracer provides a good starting point to further validate and explore c-Abl as a target for therapeutic strategies against PD supported by PET.

6.
Biology (Basel) ; 11(3)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35336782

RESUMEN

Non-invasive imaging of atherosclerosis can help in the identification of vulnerable plaque lesions. CD40 is a co-stimulatory molecule present on various immune and non-immune cells in the plaques and is linked to inflammation and plaque instability. We hypothesize that a 89Zr-labeled anti-CD40 monoclonal antibody (mAb) tracer has the potential to bind to cells present in atherosclerotic lesions and that CD40 Positron Emission Tomography (PET) can contribute to the detection of vulnerable atherosclerotic plaque lesions. To study this, wild-type (WT) and ApoE-/- mice were fed a high cholesterol diet for 14 weeks to develop atherosclerosis. Mice were injected with [89Zr]Zr-anti-CD40 mAb and the aortic uptake was evaluated and quantified using PET/Computed Tomography (CT) imaging. Ex vivo biodistribution was performed post-PET imaging and the uptake in the aorta was assessed with autoradiography and compared with Oil red O staining to determine the tracer potential to detect atherosclerotic plaques. On day 3 and 7 post injection, analysis of [89Zr]Zr-anti-CD40 mAb PET/CT scans showed a more pronounced aortic signal in ApoE-/- compared to WT mice with an increased aorta-to-blood uptake ratio. Autoradiography revealed [89Zr]Zr-anti-CD40 mAb uptake in atherosclerotic plaque areas in ApoE-/- mice, while no signal was found in WT mice. Clear overlap was observed between plaque areas as identified by Oil red O staining and autoradiography signal of [89Zr]Zr-anti-CD40 mAb in ApoE-/- mice. In this proof of concept study, we showed that PET/CT with [89Zr]Zr-anti-CD40 mAb can detect atherosclerotic plaques. As CD40 is associated with plaque vulnerability, [89Zr]Zr-anti-CD40 mAb has the potential to become a tracer to detect vulnerable atherosclerotic plaques.

7.
Nucl Med Biol ; 112-113: 9-19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35660796

RESUMEN

The transforming growth factor ß (TGFß) pathway plays a complex role in cancer biology, being involved in both tumour suppression as well as promotion. Overactive TGFß signalling has been linked to multiple diseases, including cancer, pulmonary arterial hypertension, and fibrosis. One of the key meditators within this pathway is the TGFß type I receptor, also termed activin receptor-like kinase 5 (ALK5). ALK5 expression level is a key determinant of TGFß signalling intensity and duration, and perturbation has been linked to diseases. A validated ALK5 positron emission tomography (PET) tracer creates an opportunity, therefore, to study its role in human diseases. To develop ALK5 PET tracers, two small molecule ALK5 kinase inhibitors were selected as lead compounds, which were labelled with carbon-11 and fluorine-18, respectively. [11C]LR111 was synthesized with a yield of 17 ± 6%, a molar activity of 126 ± 79 GBq·µmol-1 and a purity of >95% (n = 44). [18F]EW-7197 was synthesized with a yield of 10 ± 5%, a molar activity of 183 ± 126 GBq·µmol-1 and a purity of >95% (n = 11). Metabolic stability was evaluated in vivo in mice, showing 39 ± 2% of intact [11C]LR111 and 21 ± 2% of intact [18F]EW-7197 in blood plasma at 45 min p.i. In vitro binding experiments were conducted in breast cancer MDA-MB-231 and lung cancer A431 cell lines. In addition, both tracers were used for PET imaging in MDA-MB-231 xenograft models. Selective uptake of [18F]EW-7197 and [11C]LR111 was observed in MDA-MB-231 cells, in the MDA-MB-231 tumour xenografts in vivo and in the autoradiograms. As [11C]LR111 and [18F]EW-7197 showed selectivity of binding to ALK5 in vivo and in vitro. Both tracers are thereby valuable tools for the detection of ALK5 activity.


Asunto(s)
Neoplasias Pulmonares , Tomografía de Emisión de Positrones , Activinas , Compuestos de Anilina , Animales , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Triazoles
8.
Theranostics ; 12(16): 7067-7079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276653

RESUMEN

The accelerated approval of the monoclonal antibody (mAb) aducanumab as a treatment option for Alzheimer's Disease and the continued discussions about its efficacy have shown that a better understanding of immunotherapy for the treatment of neurodegenerative diseases is needed. 89Zr-immuno-PET could be a suitable tool to open new avenues for the diagnosis of CNS disorders, monitoring disease progression, and assessment of novel therapeutics. Herein, three different 89Zr-labeling strategies and direct radioiodination with 125I of a bispecific anti-amyloid-beta aducanumab derivate, consisting of aducanumab with a C-terminal fused anti-transferrin receptor binding single chain Fab fragment derived from 8D3 (Adu-8D3), were compared ex vivo and in vivo with regard to brain uptake and target engagement in an APP/PS1 Alzheimer's disease mouse model and wild type animals. Methods: Adu-8D3 and a negative control antibody, based on the HIV specific B12 antibody also carrying C-terminal fused 8D3 scFab (B12-8D3), were each conjugated with NCS-DFO, NCS-DFO*, or TFP-N-suc-DFO-Fe-ester, followed by radiolabeling with 89Zr. 125I was used as a substitute for 124I for labeling of both antibodies. 30 µg of radiolabeled mAb, corresponding to approximately 6 MBq 89Zr or 2.5 MBq 125I, were injected per mouse. PET imaging was performed 1, 3 and 7 days post injection (p.i.). All mice were sacrificed on day 7 p.i. and subjected to ex vivo biodistribution and brain autoradiography. Immunostaining on brain tissue was performed after autoradiography for further validation. Results: Ex vivo biodistribution revealed that the brain uptake of [89Zr]Zr-DFO*-NCS-Adu-8D3 (2.19 ±0.12 %ID/g) was as high as for its 125I-analog (2.21 ±0.15 %ID/g). [89Zr]Zr-DFO-NCS-Adu-8D3 and [89Zr]Zr-DFO-N-suc-Adu-8D3 showed significantly lower uptake (< 0.65 %ID/g), being in the same range as for the 89Zr-labeled controls (B12-8D3). Autoradiography of [89Zr]Zr-DFO*-NCS-Adu-8D3 and [125I]I-Adu-8D3 showed an amyloid-beta related granular uptake pattern of radioactivity. In contrast, the [89Zr]Zr-DFO-conjugates and the control antibody groups did not show any amyloid-beta related uptake pattern, indicating that DFO is inferior for 89Zr-immuno-PET imaging of the brain in comparison to DFO* for Adu-8D3. This was confirmed by day 7 PET images showing only amyloid-beta related brain uptake for [89Zr]Zr-DFO*-NCS-Adu-8D3. In wild type animals, such an uptake was not observed. Immunostaining showed a co-localization of all administered Adu-8D3 conjugates with amyloid-beta plaques. Conclusion: We successfully demonstrated that 89Zr-immuno-PET is suitable for imaging and quantifying amyloid-beta specific brain uptake using a bispecific aducanumab brain shuttling antibody, Adu-8D3, but only when using the novel chelator DFO*, and not DFO, for labeling with 89Zr.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Biespecíficos , Animales , Ratones , Radioisótopos de Yodo , Quelantes , Deferoxamina , Circonio , Distribución Tisular , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales/uso terapéutico , Péptidos beta-Amiloides , Fragmentos Fab de Inmunoglobulinas , Ésteres
9.
EJNMMI Res ; 11(1): 57, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34117946

RESUMEN

INTRODUCTION: The assessment of ex vivo biodistribution is the preferred method for quantification of radiotracers biodistribution in preclinical models, but is not in line with current ethics on animal research. PET imaging allows for noninvasive longitudinal evaluation of tracer distribution in the same animals, but systemic comparison with ex vivo biodistribution is lacking. Our aim was to evaluate the potential of preclinical PET imaging for accurate tracer quantification, especially in tumor models. METHODS: NEMA NU 4-2008 phantoms were filled with 11C, 68Ga, 18F, or 89Zr solutions and scanned in Mediso nanoPET/CT and PET/MR scanners until decay. N87 tumor-bearing mice were i.v. injected with either [18F]FDG (~ 14 MBq), kept 50 min under anesthesia followed by imaging for 20 min, or with [89Zr]Zr-DFO-NCS-trastuzumab (~ 5 MBq) and imaged 3 days post-injection for 45 min. After PET acquisition, animals were killed and organs of interest were collected and measured in a γ-counter to determine tracer uptake levels. PET data were reconstructed using TeraTomo reconstruction algorithm with attenuation and scatter correction and regions of interest were drawn using Vivoquant software. PET imaging and ex vivo biodistribution were compared using Bland-Altman plots. RESULTS: In phantoms, the highest recovery coefficient, thus the smallest partial volume effect, was obtained with 18F for both PET/CT and PET/MR. Recovery was slightly lower for 11C and 89Zr, while the lowest recovery was obtained with 68Ga in both scanners. In vivo, tumor uptake of the 18F- or 89Zr-labeled tracer proved to be similar irrespective whether quantified by either PET/CT and PET/MR or ex vivo biodistribution with average PET/ex vivo ratios of 0.8-0.9 and a deviation of 10% or less. Both methods appeared less congruent in the quantification of tracer uptake in healthy organs such as brain, kidney, and liver, and depended on the organ evaluated and the radionuclide used. CONCLUSIONS: Our study suggests that PET quantification of 18F- and 89Zr-labeled tracers is reliable for the evaluation of tumor uptake in preclinical models and a valuable alternative technique for ex vivo biodistribution. However, PET and ex vivo quantification require fully described experimental and analytical procedures for reliability and reproducibility.

10.
Nucl Med Biol ; 102-103: 97-105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34743064

RESUMEN

INTRODUCTION: Parathyroid hyperplasia is a disease characterized by overactive parathyroid glands secreting increased levels of parathyroid hormone. Surgical removal of the parathyroid glands is the standard treatment but requires precise pre-operative localization of the glands. However, currently available imaging modalities show limited sensitivity. Since positron emission tomography (PET) is a molecular imaging technique with high accuracy and sensitivity, our aim was to develop a new PET tracer for overactive parathyroid glands imaging by radiolabelling cinacalcet, a drug binding to the calcium-sensing receptor of the parathyroid glands. METHODS: [18F]Cinacalcet was synthesized by copper-catalysed [18F]trifluoromethylation of a boronic acid precursor using high molar activity [18F]fluoroform. Ex vivo biodistribution and metabolism were evaluated in 12 healthy male Wistar rats at 5, 15, 45 and 90 min. PET scans were performed at baseline and after blocking with NPS R-568. RESULTS: [18F]Cinacalcet was obtained in an overall radiosynthesis time of 1 h with a radiochemical purity of 98 ± 1%, a radiochemical yield of 8 ± 4% (overall, n = 7, corrected for decay) and a molar activity of 40 ± 11 GBq/µmol (n = 7, at EOS). The ex vivo biodistribution showed uptake in the thyroid and parathyroid glands as well as in other glands such as adrenals, salivary glands and pancreas. The tracer was rapidly cleared from the blood via liver and kidneys and showed fast metabolism. PET images confirmed uptake in the target organ. However, in a blocking study with NPS R-568 specific binding of [18F]cinacalcet to the CaSR could not be confirmed. CONCLUSIONS: [18F]Cinacalcet was successfully synthesized. First in vivo experiments in healthy rats showed uptake of the tracer in the target organ and fast metabolism, encouraging further in vivo evaluation of this tracer.


Asunto(s)
Cinacalcet
11.
Theranostics ; 10(13): 5815-5828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32483421

RESUMEN

Probody® therapeutics are recombinant masked monoclonal antibody (mAb) prodrugs that become activated by proteases present in the tumor microenvironment. This makes them attractive for use as Probody drug conjugates (PDCs). CX-2009 is a novel PDC with the toxic drug DM4 coupled to an anti-CD166 Probody therapeutic. CD166 is overexpressed in multiple tumor types and to a lesser extent by healthy tissue. Methods: The tumor targeting potential of CX-2009 was assessed by performing 89Zr-immuno-PET/biodistribution/therapy studies in a CD166-positive H292 lung cancer mouse model. Head-to-head comparisons of CX-2009 with the Probody therapeutic without DM4 (CX-191), the unmasked antibody drug conjugate (ADC) CX-1031, and the parental mAb CX-090 were performed. All constructs were 89Zr labeled in a GMP compliant way, administered at 10, 110, or 510 µg, and ex vivo biodistribution was assessed at 24, 72, and 168 hours post-injection. Results: Comparable biodistribution was observed for all constructs, confirmed with PET/CT. Tumors showed the highest uptake: 21.8 ± 2.3 ([89Zr]Zr-CX-2009), 21.8 ± 5.0 ([89Zr]Zr­CX-191), 18.7 ± 2.5 ([89Zr]Zr-CX-1031) and 20.8 ± 0.9 %ID/g ([89Zr]Zr-CX-090) at 110 µg injected. Increasing the dose to 510 µg resulted in lower tumor uptake and higher blood levels for all constructs, suggesting receptor saturation. In addition, CX-2009 and CX-1031 showed similar therapeutic potential. Conclusions: CX-2009 is optimally capable of targeting CD166-expressing tumors when compared with its derivatives, implying that enzymatic activation inside the tumor, required to allow CD166 binding, does not limit tumor targeting. Because CX-2009 does not bind to mouse CD166, however, reduced targeting of healthy organs should be confirmed in ongoing clinical 89Zr-immuno-PET studies.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado/inmunología , Maitansina/farmacología , Profármacos/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Inmunoconjugados/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Radioisótopos/farmacología , Radiofármacos/farmacología , Distribución Tisular/efectos de los fármacos , Circonio/química , Circonio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA