Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 439(7074): 331-5, 2006 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-16421571

RESUMEN

The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.


Asunto(s)
Cromosomas Humanos Par 8/genética , Evolución Molecular , Animales , Mapeo Contig , ADN Satélite/genética , Defensinas/genética , Eucromatina/genética , Femenino , Humanos , Inmunidad Innata/genética , Masculino , Datos de Secuencia Molecular , Familia de Multigenes/genética , Análisis de Secuencia de ADN
2.
Mol Biol Evol ; 27(7): 1585-97, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20142441

RESUMEN

Rapid evolution is a hallmark of centromeric DNA in eukaryotic genomes. Yet, the centromere itself has a conserved functional role that is mediated by the kinetochore protein complex. To broaden our understanding about both the DNA and proteins that interact at the functional centromere, we sought to gain a detailed view of the evolutionary events that have shaped the primate kinetochore. Specifically, we performed comparative mapping and sequencing of the genomic regions encompassing the genes encoding three foundation kinetochore proteins: Centromere Proteins A, B, and C (CENP-A, CENP-B, and CENP-C). A histone H3 variant, CENP-A provides the foundation of the centromere-specific nucleosome. Comparative sequence analyses of the CENP-A gene in 14 primate species revealed encoded amino-acid residues within both the histone-fold domain and the N-terminal tail that are under strong positive selection. Similar comparative analyses of CENP-C, another foundation protein essential for centromere function, identified amino-acid residues throughout the protein under positive selection in the primate lineage, including several in the centromere localization and DNA-binding regions. Perhaps surprisingly, the gene encoding CENP-B, a kinetochore protein that binds specifically to alpha-satellite DNA, was not found to be associated with signatures of positive selection. These findings point to important and distinct evolutionary forces operating on the DNA and proteins of the primate centromere.


Asunto(s)
Autoantígenos/genética , Proteína B del Centrómero/genética , Proteínas Cromosómicas no Histona/genética , Evolución Molecular , Cinetocoros/fisiología , Primates/genética , Secuencia de Aminoácidos , Animales , Centrómero/fisiología , Proteína A Centromérica , ADN Satélite/genética , Histonas/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
3.
PLoS One ; 4(8): e6602, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19672304

RESUMEN

Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite DNA that are separated from chromosome arms by unordered alpha satellite monomers and other repetitive elements. Complexities in assembling such large repetitive regions have limited detailed studies of centromeric chromatin organization. However, a genomic map of the human X centromere has provided new opportunities to explore genomic architecture of a complex locus. We used ChIP to examine the distribution of modified histones within centromere regions of multiple X chromosomes. Methylation of H3 at lysine 4 coincided with DXZ1 higher order alpha satellite, the site of CENP-A localization. Heterochromatic histone modifications were distributed across the 400-500 kb pericentromeric regions. The large arrays of alpha satellite and gamma satellite DNA were enriched for both euchromatic and heterochromatic modifications, implying that some pericentromeric repeats have multiple chromatin characteristics. Partial truncation of the X centromere resulted in reduction in the size of the CENP-A/Cenp-A domain and increased heterochromatic modifications in the flanking pericentromere. Although the deletion removed approximately 1/3 of centromeric DNA, the ratio of CENP-A to alpha satellite array size was maintained in the same proportion, suggesting that a limited, but defined linear region of the centromeric DNA is necessary for kinetochore assembly. Our results indicate that the human X centromere contains multiple types of chromatin, is organized similarly to smaller eukaryotic centromeres, and responds to structural changes by expanding or contracting domains.


Asunto(s)
Centrómero , Cromosomas Humanos X , Histonas/metabolismo , Animales , Secuencia de Bases , Metilación de ADN , Cartilla de ADN , Humanos , Ratones
4.
Genome Biol ; 9(10): R155, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18957082

RESUMEN

BACKGROUND: Indian muntjac (Muntiacus muntjak vaginalis) has an extreme mammalian karyotype, with only six and seven chromosomes in the female and male, respectively. Chinese muntjac (Muntiacus reevesi) has a more typical mammalian karyotype, with 46 chromosomes in both sexes. Despite this disparity, the two muntjac species are morphologically similar and can even interbreed to produce viable (albeit sterile) offspring. Previous studies have suggested that a series of telocentric chromosome fusion events involving telomeric and/or satellite repeats led to the extant Indian muntjac karyotype. RESULTS: We used a comparative mapping and sequencing approach to characterize the sites of ancestral chromosomal fusions in the Indian muntjac genome. Specifically, we screened an Indian muntjac bacterial artificial-chromosome library with a telomere repeat-specific probe. Isolated clones found by fluorescence in situ hybridization to map to interstitial regions on Indian muntjac chromosomes were further characterized, with a subset then subjected to shotgun sequencing. Subsequently, we isolated and sequenced overlapping clones extending from the ends of some of these initial clones; we also generated orthologous sequence from isolated Chinese muntjac clones. The generated Indian muntjac sequence has been analyzed for the juxtaposition of telomeric and satellite repeats and for synteny relationships relative to other mammalian genomes, including the Chinese muntjac. CONCLUSIONS: The generated sequence data and comparative analyses provide a detailed genomic context for seven ancestral chromosome fusion sites in the Indian muntjac genome, which further supports the telocentric fusion model for the events leading to the unusual karyotypic differences among muntjac species.


Asunto(s)
Genoma , Ciervo Muntjac/genética , Análisis de Secuencia de ADN , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Evolución Molecular , Femenino , Cariotipificación , Masculino , Modelos Genéticos , Sintenía
5.
Artículo en Inglés | MEDLINE | ID: mdl-16756479

RESUMEN

Centromeres are the elements of chromosomes that assemble the proteinaceous kinetochore, maintain sister chromatid cohesion, regulate chromosome attachment to the spindle, and direct chromosome movement during cell division. Although the functions of centromeres and the proteins that contribute to their complex structure and function are conserved in eukaryotes, centromeric DNA diverges rapidly. Human centromeres are particularly complicated. Here, we review studies on the organization of homogeneous arrays of chromosome-specific alpha-satellite repeats and evolutionary links among eukaryotic centromeric sequences. We also discuss epigenetic mechanisms of centromere identity that confer structural and functional features of the centromere through DNA-protein interactions and post-translational modifications, producing centromere-specific chromatin signatures. The assembly and organization of human centromeres, the contributions of satellite DNA to centromere identity and diversity, and the mechanism whereby centromeres are distinguished from the rest of the genome reflect ongoing puzzles in chromosome biology.


Asunto(s)
Centrómero/genética , Cromatina/genética , Secuencia de Bases , Evolución Biológica , ADN Satélite , Epigénesis Genética , Humanos
6.
Proc Natl Acad Sci U S A ; 102(30): 10563-8, 2005 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16030148

RESUMEN

Previous studies of the pericentromeric region of the human X chromosome short arm (Xp) revealed an age gradient from ancient DNA that contains expressed genes to recent human-specific DNA at the functional centromere. We analyzed the finished sequence of this human genomic region to investigate its evolutionary history. Phylogenetic analysis of >1,500 alpha-satellite monomers from the region revealed the presence of five physical domains, each containing monomers from a distinct phylogenetic clade. The most distal domain contains long interspersed nucleotide element repeats that were active >35 million years ago, whereas the four proximal domains contain more recently active long interspersed nucleotide element repeats. An out-of-register, unequal recombination (i.e., crossover) detected at the edge of the X chromosome-specific alpha-satellite array (DXZ1) may reflect the most recent of a series of punctuating events during evolution that resulted in a proximal physical expansion of the X centromere. The first 18 kb of this array has 97-99% pairwise identity among all 2-kb repeat units. To perform more detailed evolutionary comparisons, we sequenced the junction between the ancient DNA of Xp and the primate-specific alpha satellite in chimpanzee, gorilla, orangutan, vervet, macaque, and baboon. The striking conservation found in all cases supports the ancestral nature of the alpha satellite at this location. These studies demonstrate that the primate X centromere appears to have evolved through repeated expansion events occurring within the central, active region of centromeric DNA, with the newly added sequences then conferring centromere function.


Asunto(s)
Centrómero/genética , Cromosomas Humanos X/genética , Expansión de las Repeticiones de ADN/genética , Evolución Molecular , Filogenia , Primates/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada/genética , Humanos , Secuencias Repetitivas Esparcidas/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
7.
Genome Res ; 13(1): 55-63, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529306

RESUMEN

Duplications have long been postulated to be an important mechanism by which genomes evolve. Interspecies genomic comparisons are one method by which the origin and molecular mechanism of duplications can be inferred. By comparative mapping in human, mouse, and rat, we previously found evidence for a recent chromosome-fission event that occurred in the mouse lineage. Cytogenetic mapping revealed that the genomic segments flanking the fission site appeared to be duplicated, with copies residing near the centromere of multiple mouse chromosomes. Here we report the mapping and sequencing of the regions of mouse chromosomes 5 and 6 involved in this chromosome-fission event as well as the results of comparative sequence analysis with the orthologous human and rat genomic regions. Our data indicate that the duplications associated with mouse chromosomes 5 and 6 are recent and that the resulting duplicated segments share significant sequence similarity with a series of regions near the centromeres of the mouse chromosomes previously identified by cytogenetic mapping. We also identified pericentromeric duplicated segments shared between mouse chromosomes 5 and 1. Finally, novel mouse satellite sequences as well as putative chimeric transcripts were found to be associated with the duplicated segments. Together, these findings demonstrate that pericentromeric duplications are not restricted to primates and may be a common mechanism for genome evolution in mammals.


Asunto(s)
Centrómero/genética , Duplicación de Gen , Animales , Quimera/genética , Cromosomas/genética , Cromosomas Humanos/genética , Secuencia Conservada/genética , ADN Satélite/genética , Evolución Molecular , Marcadores Genéticos/genética , Humanos , Ratones , Mapeo Físico de Cromosoma/métodos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA