Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(6): 1101-1119.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38428433

RESUMEN

Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.


Asunto(s)
Membranas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Animales , Membranas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
2.
J Bacteriol ; 204(9): e0011222, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35975994

RESUMEN

Saccharibacteria Nanosynbacter lyticus strain TM7x is a member of the broadly distributed candidate phylum radiation. These bacteria have ultrasmall cell sizes, have reduced genomes, and live as epibionts on the surfaces of other bacteria. The mechanisms by which they establish and maintain this relationship are not yet fully understood. The transcriptomes of the epibiont TM7x and its host bacteria Schaalia odontolytica strain XH001 were captured across the establishment of symbiosis during both the initial interaction and stable symbiosis. The results showed a dynamic interaction with large shifts in gene expression for both species between the initial encounter and stable symbiosis, notably in transporter genes. During stable symbiosis, the host XH001 showed higher gene expression for peptidoglycan biosynthesis, mannosylation, cell cycle and stress-related genes, whereas it showed lower expression of chromosomal partitioning genes. This was consistent with the elongated cell shape seen in XH001 infected with TM7x and our discovery that infection resulted in thickened cell walls. Within TM7x, increased pili, type IV effector genes, and arginine catabolism/biosynthesis gene expression during stable symbiosis implied a key role for these functions in the interaction. Consistent with its survival and persistence in the human microbiome as an obligate epibiont with reduced de novo biosynthetic capacities, TM7x also showed higher levels of energy production and peptidoglycan biosynthesis, but lower expression of stress-related genes, during stable symbiosis. These results imply that TM7x and its host bacteria keep a delicate balance in order to sustain an episymbiotic lifestyle. IMPORTANCE Nanosynbacter lyticus type strain TM7x is the first cultivated member of the Saccharibacteria and the candidate phyla radiation (CPR). It was discovered to be ultrasmall in cell size with a highly reduced genome that establishes an obligate epibiotic relationship with its host bacterium. The CPR is a large, monophyletic radiation of bacteria with reduced genomes that includes Saccharibacteria. The vast majority of the CPR have yet to be cultivated, and our insights into these unique organisms to date have been derived from only a few Saccharibacteria species. Being obligate parasites, it is unknown how these ultrasmall Saccharibacteria, which are missing many de novo biosynthetic pathways, are maintained at a high prevalence within the human microbiome as well as in the environment.


Asunto(s)
Simbiosis , Transcriptoma , Arginina/metabolismo , Bacterias/genética , Genoma Bacteriano , Humanos , Peptidoglicano/metabolismo
3.
FASEB J ; 35(4): e21448, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749913

RESUMEN

Inflammation in arterial walls leads to coronary artery disease (CAD). We previously reported that a high omega-3 fatty index was associated with prevention of progression of coronary atherosclerosis, a disease of chronic inflammation in the arterial wall. However, the mechanism of such benefit is unclear. The two main omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors of specialized pro-resolving lipid mediators (SPMs)-resolvins and maresins-which actively resolve chronic inflammation. To explore whether SPMs are associated with coronary plaque progression, levels of SPMs and proinflammatory mediators (leukotriene B4 [LTB4 ] and prostaglandins) were measured using liquid chromatography-tandem mass spectrometry in 31 statin-treated patients with stable CAD randomized to either EPA and DHA, 3.36 g daily, or no EPA/DHA (control). Coronary plaque volume was measured by coronary computed tomographic angiography at baseline and at 30-month follow-up. Higher plasma levels of EPA+DHA were associated with significantly increased levels of two SPMs-resolvin E1 and maresin 1-and 18-hydroxy-eicosapentaenoic acid (HEPE), the precursor of resolvin E1. Those with low plasma EPA+DHA levels had a low (18-HEPE+resolvin E1)/LTB4 ratio and significant plaque progression. Those with high plasma EPA+DHA levels had either low (18-HEPE+resolvin E1)/LTB4 ratios with significant plaque progression or high (18-HEPE+resolvin E1)/LTB4 ratios with significant plaque regression. These findings suggest that an imbalance between pro-resolving and proinflammatory lipid mediators is associated with plaque progression and potentially mediates the beneficial effects of EPA and DHA in CAD patients.


Asunto(s)
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucotrieno B4/sangre , Placa Aterosclerótica/tratamiento farmacológico , Prostaglandinas/sangre , Anciano , Ácidos Docosahexaenoicos/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Mol Biol Evol ; 37(2): 395-405, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31614365

RESUMEN

Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.


Asunto(s)
Primates/metabolismo , Saliva/química , Proteínas y Péptidos Salivales/análisis , Animales , Evolución Biológica , Gorilla gorilla/genética , Gorilla gorilla/metabolismo , Humanos , Macaca/genética , Macaca/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo
5.
FASEB J ; 34(6): 7733-7744, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277856

RESUMEN

Our previous results showed that the specialized pro-resolving mediator (SPM) Resolvin D1 (RvD1) promotes resolution of inflammation in salivary glands in non-obese diabetic (NOD)/ShiLtJ, a mouse model for Sjögren's syndrome (SS). Additionally, mice lacking the RvD1 receptor ALX/FPR2 show defective innate and adaptive immune responses in salivary glands. Particularly, ALX/FPR2 KO mice exhibit exacerbated inflammation in their salivary glands in response to systemic LPS treatment. Moreover, female ALX/FPR2 KO mice show increased autoantibody production and loss of salivary gland function with age. Together, these studies suggest that an underlying SPM dysregulation could be contributing to SS progression. Therefore, we investigated whether SPM production is altered in NOD/ShiLtJ using metabololipidomics and enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that SPM levels were broadly elevated in plasma collected from NOD/ShiLtJ female mice after disease onset, whereas these drastic changes did not occur in male mice. Moreover, gene expression of enzymes involved in SPM biosynthesis were altered in submandibular glands (SMG) from NOD/ShiLtJ female mice after disease onset, with 5-LOX and 12/15-LOX being downregulated and upregulated, respectively. Despite this dysregulation, the abundances of the SPM products of these enzymes (ie, RvD1 and RvD2) were unaltered in freshly isolated SMG cells suggesting that other cell populations (eg, lymphocytes) may be responsible for the overabundance of SPMs that we observed. The elevation of SPMs noted here appeared to be sex mediated, meaning that it was observed only in one sex (females). Given that SS primarily affects females (roughly 90% of diagnosed cases), these results may provide some insights into the mechanisms underlying the observed sexual dimorphism.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Síndrome de Sjögren/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Femenino , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD/metabolismo , Ratones Noqueados , Receptores de Formil Péptido/metabolismo , Glándulas Salivales/metabolismo , Factores Sexuales , Glándula Submandibular/metabolismo , Regulación hacia Arriba/fisiología
6.
Metabolomics ; 16(9): 98, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915320

RESUMEN

INTRODUCTION: Salivary metabolite profiles are altered in adults with HIV compared to their uninfected counterparts. Less is known about youth with HIV and how oral disorders that commonly accompany HIV infection impact salivary metabolite levels. OBJECTIVE: As part of the Adolescent Master Protocol multi-site cohort study of the Pediatric HIV/AIDS Cohort Study (PHACS) network we compared the salivary metabolome of youth with perinatally-acquired HIV (PHIV) and youth HIV-exposed, but uninfected (PHEU) and determined whether metabolites differ in PHIV versus PHEU. METHODS: We used three complementary targeted and discovery-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows to characterize salivary metabolite levels in 20 PHIV and 20 PHEU youth with and without moderate periodontitis. We examined main effects associated with PHIV and periodontal disease, and the interaction between them. RESULTS: We did not identify differences in salivary metabolite profiles that remained significant under stringent control for both multiple between-group comparisons and multiple metabolites. Levels of cadaverine, a known periodontitis-associated metabolite, were more abundant in individuals with periodontal disease with the difference being more pronounced in PHEU than PHIV. In the discovery-based dataset, we identified a total of 564 endogenous peptides in the metabolite extracts, showing that proteolytic processing and amino acid metabolism are important to consider in the context of HIV infection. CONCLUSION: The salivary metabolite profiles of PHIV and PHEU youth were overall very similar. Individuals with periodontitis particularly among the PHEU youth had higher levels of cadaverine, suggesting that HIV infection, or its treatment, may influence the metabolism of oral bacteria.


Asunto(s)
Infecciones por VIH/complicaciones , Enfermedades Periodontales/metabolismo , Saliva/metabolismo , Adolescente , Bacterias , Niño , Cromatografía Liquida , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Metabolómica , Salud Bucal , Espectrometría de Masas en Tándem , Adulto Joven
7.
Proteomics ; 19(20): e1900023, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476108

RESUMEN

Dried saliva spot sampling is a minimally invasive technique for the spatial mapping of salivary protein distribution in the oral cavity. In conjunction with untargeted nano-flow liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) analysis, DSS is used to compare the proteomes secreted by unstimulated parotid and submandibular/sublingual salivary glands. Two hundred and twenty proteins show a statistically significant association with parotid gland secretion, while 30 proteins are at least tenfold more abundant in the submandibular/sublingual glands. Protein identifications and label-free quantifications are highly reproducible across the paired glands on three consecutive days, enabling to establish the core proteome of glandular secretions categorized into eight salivary protein groups according to their biological functions. The data suggest that the relative contributions of the salivary glands fine-tune the biological activity of human saliva via medium-abundant proteins. A number of biomarker candidates for Sjögren's syndrome are observed among the gland-specifically expressed proteins, which indicates that glandular origin is an important factor to consider in salivary biomarker discovery.


Asunto(s)
Saliva/química , Proteínas y Péptidos Salivales/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Humanos , Proteoma/análisis , Proteómica/métodos , Glándulas Salivales/química , Manejo de Especímenes/métodos
8.
Electrophoresis ; 38(20): 2603-2609, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28605028

RESUMEN

Two-dimensional PAGE (2D-PAGE) is a key technique for the separation of complex protein samples to survey the protein inventory of prokaryotic microorganisms. Although the preparation of proteins is a critical step in 2D gel experiments, its effect on the outcome of proteome data is often underestimated. In this work, we show that the choice of protein isolation method can have a profound impact on the quality of 2D gels of protein extracts from prokaryotes. Based on Xanthomonas campestris, a commercially relevant producer of the thickening agent xanthan, we validated a phenol extraction protocol for the purification of bacterial proteins that provides excellent 2D gel separation. As a proof of concept, this method was used to study the effect of methionine-a medium compound that reduces the xanthan output of industrial fermentations-on the cellular proteome of Xanthomonas. The detection of nine regulated proteins associated with sulfur metabolism (Cgl, CysI, CysJ, CysK, MetH1, MetY) and sugar nucleotide biosynthesis (Pgi, Ugd, XanA) proved the efficiency of phenol extraction for the screening of statistically significant abundance changes in 2D gel spots and MALDI-TOF-MS based identification in bacteria. Since this method is very robust, it may be useful for the study of other prokaryotes that are relevant in industrial biotechnology.


Asunto(s)
Proteínas Bacterianas/análisis , Metionina/análisis , Xanthomonas campestris/química , Proteínas Bacterianas/metabolismo , Fraccionamiento Químico , Electroforesis , Electroforesis en Gel Bidimensional/métodos , Metionina/metabolismo , Nucleótidos/análisis , Nucleótidos/metabolismo , Fenol/química , Polisacáridos Bacterianos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica , Xanthomonas campestris/metabolismo
9.
Cell Chem Biol ; 31(4): 712-728.e9, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38029756

RESUMEN

There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.

10.
Neuron ; 112(12): 1943-1958.e10, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38697112

RESUMEN

Mutations in the methyl-DNA-binding protein MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). How MECP2 contributes to transcriptional regulation in normal and disease states is unresolved; it has been reported to be an activator and a repressor. We describe here the first integrated CUT&Tag, transcriptome, and proteome analyses using human neurons with wild-type (WT) and mutant MECP2 molecules. MECP2 occupies CpG-rich promoter-proximal regions in over four thousand genes in human neurons, including a plethora of autism risk genes, together with RNA polymerase II (RNA Pol II). MECP2 directly interacts with RNA Pol II, and genes occupied by both proteins showed reduced expression in neurons with MECP2 patient mutations. We conclude that MECP2 acts as a positive cofactor for RNA Pol II gene expression at many neuronal genes that harbor CpG islands in promoter-proximal regions and that RTT is due, in part, to the loss of gene activity of these genes in neurons.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Neuronas , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Humanos , Neuronas/metabolismo , Regiones Promotoras Genéticas , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Islas de CpG/genética , Mutación , Regulación de la Expresión Génica/genética
11.
Mol Plant Microbe Interact ; 26(10): 1131-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23819805

RESUMEN

The black rot pathogen Xanthomonas campestris utilizes molecules of the diffusible signal factor (DSF) family as signals to regulate diverse processes contributing to virulence. DSF signal synthesis and transduction requires proteins encoded by the rpf gene cluster. RpfF catalyzes DSF synthesis, whereas the RpfCG two-component system links the perception of DSF to alteration in the level of the second messenger cyclic di-GMP. As this nucleotide can exert a regulatory influence at the post-transcriptional and post-translational levels, we have used comparative proteomics to identify Rpf-regulated processes in X. campestris that may not be revealed by transcriptomics. The abundance of a number of proteins was altered in rpfF, rpfC, or rpfG mutants compared with the wild type. These proteins belonged to several functional categories, including biosynthesis and intermediary metabolism, regulation, oxidative stress or antibiotic resistance, and DNA replication. For many of these proteins, the alteration in abundance was not associated with alteration in transcript level. A directed mutational analysis allowed us to describe a number of new virulence factors among these proteins, including elongation factor P and a putative outer membrane protein, which are both widely conserved in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Proteómica , Raphanus/microbiología , Transducción de Señal , Xanthomonas campestris/metabolismo , Proteínas Bacterianas/genética , Comunicación Celular , Análisis Mutacional de ADN , Electroforesis en Gel Bidimensional , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Mutación , Hojas de la Planta/microbiología , ARN Bacteriano/genética , ARN Mensajero/genética , Proteínas Recombinantes de Fusión , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad , Xanthomonas campestris/fisiología
12.
bioRxiv ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37645817

RESUMEN

Mitochondrial outer membrane α-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse substrates remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse α-helical substrates reveals that these components are organized into distinct targeting pathways which act on substrates based on their topology. NAC is required for efficient targeting of polytopic proteins whereas signal-anchored proteins require TTC1, a novel cytosolic chaperone which physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.

13.
Cell Rep ; 42(5): 112299, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37080202

RESUMEN

Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.


Asunto(s)
Microbioma Gastrointestinal , Vuelo Espacial , Humanos , ARN Ribosómico 16S/genética , Cromatografía Liquida , Viaje , Espectrometría de Masas en Tándem
14.
Front Immunol ; 12: 704163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589083

RESUMEN

Background: Periodontal disease is among the sixth most common inflammatory diseases worldwide with high risk to promote complications from other inflammatory diseases including diabetes, cardiovascular disease and Alzheimer's Disease. Failure of active resolution of inflammation pathways is implicated in pathogenesis of periodontal diseases, including gingivitis. Lipoxin A4 (LXA4), a member of the specialized pro-resolving lipid mediators (SPMs) that drive resolution of inflammation via GPC-receptor mediated pathways, offered therapeutic advantages in preclinical models of periodontitis. Methods: We conducted a randomized, placebo-controlled, parallel-group Phase 1 clinical trial to determine the safety and preliminary efficacy of an LXA4 analog in patients with gingival inflammation. One hundred twenty-seven (127) individuals were randomized to daily use of an oral rinse containing a LXA4 mimetic, methyl ester-benzo-lipoxin A4 (BLXA4), placebo rinse or a no-rinse control group for 28 days. Treatment emergent adverse events (TEAEs) were assessed for safety, the primary outcome. Secondary outcomes included the change in the level of gingival inflammation and periodontal pocket depth (PD). Serum SPMs were monitored using targeted lipid mediator lipidomics to assess potential systemic impact of BLXA4. Results: The frequency of TEAEs was similar in BLXA4 and placebo-treated groups with no study-related SAEs. Once-daily rinsing with BLXA4 for 28-days resulted in a greater decrease in gingival inflammation compared to placebo rinse and no-rinse control groups (mean change: 0.26 GI unit vs 0.21 and 0.17, respectively). PD reduction was also greater with BLXA4 oral rinse compared to placebo and no-rinse groups (mean reduction: 1.23 mm vs. 0.71 mm and 0.46 mm, respectively). Topical application of BLXA4 increased serum levels of SPMs. Conclusion: Treatment with BLXA4 reduces local inflammation, and increases abundance of pro-resolution molecules systemically, which may dampen inflammation that can mediate progression and course of inflammatory diseases beyond periodontitis. Clinical Trial Registration: ClinicalTrials.gov, identifier (NCT02342691).


Asunto(s)
Gingivitis/tratamiento farmacológico , Lipoxinas/administración & dosificación , Periodontitis/tratamiento farmacológico , Administración Tópica , Adolescente , Adulto , Anciano , Femenino , Humanos , Lipoxinas/efectos adversos , Masculino , Persona de Mediana Edad
15.
Bone Rep ; 14: 100754, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33665237

RESUMEN

Bone biomineralization is a complex process in which type I collagen and associated non-collagenous proteins (NCPs), including glycoproteins and proteoglycans, interact closely with inorganic calcium and phosphate ions to control the precipitation of nanosized, non-stoichiometric hydroxyapatite (HAP, idealized stoichiometry Ca10(PO4)6(OH)2) within the organic matrix of a tissue. The ability of certain vertebrate tissues to mineralize is critically related to several aspects of their function. The goal of this study was to identify specific NCPs in mineralizing and non-mineralizing tissues of two animal models, rat and turkey, and to determine whether some NCPs are unique to each type of tissue. The tissues investigated were rat femur (mineralizing) and tail tendon (non-mineralizing) and turkey leg tendon (having both mineralizing and non-mineralizing regions in the same individual specimen). An experimental approach ex vivo was designed for this investigation by combining sequential protein extraction with comprehensive protein mapping using proteomics and Western blotting. The extraction method enabled separation of various NCPs based on their association with either the extracellular organic collagenous matrix phases or the inorganic mineral phases of the tissues. The proteomics work generated a complete picture of NCPs in different tissues and animal species. Subsequently, Western blotting provided validation for some of the proteomics findings. The survey then yielded generalized results relevant to various protein families, rather than only individual NCPs. This study focused primarily on the NCPs belonging to the small leucine-rich proteoglycan (SLRP) family and the small integrin-binding ligand N-linked glycoproteins (SIBLINGs). SLRPs were found to be associated only with the collagenous matrix, a result suggesting that they are mainly involved in structural matrix organization and not in mineralization. SIBLINGs as well as matrix Gla (γ-carboxyglutamate) protein were strictly localized within the inorganic mineral phase of mineralizing tissues, a finding suggesting that their roles are limited to mineralization. The results from this study indicated that osteocalcin was closely involved in mineralization but did not preclude possible additional roles as a hormone. This report provides for the first time a spatial survey and comparison of NCPs from mineralizing and non-mineralizing tissues ex vivo and defines the proteome of turkey leg tendons as a model for vertebrate mineralization.

16.
Cell Host Microbe ; 29(11): 1649-1662.e7, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637779

RESUMEN

Saccharibacteria (TM7) are obligate epibionts living on the surface of their host bacteria and are strongly correlated with dysbiotic microbiomes during periodontitis and other inflammatory diseases, suggesting they are putative pathogens. However, due to the recalcitrance of TM7 cultivation, causal research to investigate their role in inflammatory diseases is lacking. Here, we isolated multiple TM7 species on their host bacteria from periodontitis patients. These TM7 species reduce inflammation and consequential bone loss by modulating host bacterial pathogenicity in a mouse ligature-induced periodontitis model. Two host bacterial functions involved in collagen binding and utilization of eukaryotic sialic acid are required for inducing bone loss and are altered by TM7 association. This TM7-mediated downregulation of host bacterial pathogenicity is shown for multiple TM7/host bacteria pairs, suggesting that, in contrast to their suspected pathogenic role, TM7 could protect mammalian hosts from inflammatory damage induced by their host bacteria.


Asunto(s)
Actinobacteria/patogenicidad , Pérdida de Hueso Alveolar/microbiología , Fenómenos Fisiológicos Bacterianos , Gingivitis/microbiología , Periodontitis/microbiología , Simbiosis , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/fisiología , Actinomyces/genética , Actinomyces/aislamiento & purificación , Actinomyces/patogenicidad , Actinomyces/fisiología , Pérdida de Hueso Alveolar/prevención & control , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/prevención & control , Colágeno/metabolismo , Placa Dental/microbiología , Regulación hacia Abajo , Genes Bacterianos , Gingivitis/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microbiota , Ácido N-Acetilneuramínico/metabolismo , Periodontitis/prevención & control , Propionibacteriaceae/genética , Propionibacteriaceae/aislamiento & purificación , Propionibacteriaceae/patogenicidad , Propionibacteriaceae/fisiología , Virulencia
17.
Sci Rep ; 10(1): 20128, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208757

RESUMEN

Obesity and diabetes are associated with chronic inflammation. Specialized pro-resolving lipid mediators (SPMs)-resolvins (Rv), protectins (PD) and maresins (MaR)-actively resolve inflammation. Bariatric surgery achieves remission of diabetes, but mechanisms are unclear. We measured SPMs and proinflammatory eicosanoid levels using liquid chromatography-tandem mass spectrometry in 29 morbidly obese subjects (13 with diabetes) and 15 nondiabetic, mildly obese subjects. Compared to the mildly obese, the morbidly obese had higher levels of SPMs-RvD3, RvD4 and PD1-and white blood cells (WBC) and platelets. Post-surgery, SPM and platelet levels decreased in morbidly obese nondiabetic subjects but not in diabetic subjects, suggesting continued inflammation. Despite similar weight reductions 1 year after surgery (44.6% vs. 46.6%), 8 diabetes remitters had significant reductions in WBC and platelet counts whereas five non-remitters did not. Remitters had a 58.2% decrease (p = 0.03) in 14-HDHA, a maresin pathway marker; non-remitters had an 875.7% increase in 14-HDHA but a 36.9% decrease in MaR1 to a median of 0. In conclusion, higher levels of RvD3, PD1 and their pathway marker, 17-HDHA, are markers of leukocyte activation and inflammation in morbid obesity and diabetes and diminish with weight loss in nondiabetic but not diabetic subjects, possibly representing sustained inflammation in the latter. Lack of diabetes remission after surgically-induced weight loss may be associated with reduced ability to produce MaR1 and sustained inflammation.


Asunto(s)
Eicosanoides/sangre , Obesidad Mórbida/sangre , Obesidad Mórbida/cirugía , Anciano , Cirugía Bariátrica , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Dinoprostona/sangre , Ácidos Docosahexaenoicos/sangre , Ácidos Grasos Insaturados/sangre , Femenino , Humanos , Recuento de Leucocitos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Quiste del Uraco/sangre , Pérdida de Peso
18.
Front Immunol ; 11: 585530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101318

RESUMEN

Maresin-1 (MaR1) and Resolvin E1 (RvE1) are specialized pro-resolving lipid mediators (SPMs) that regulate inflammatory processes. We have previously demonstrated the hard and soft tissue regenerative capacity of RvE1 in an in vivo model of the periodontal disease characterized by inflammatory tissue destruction. Regeneration of periodontal tissues requires a well-orchestrated process mediated by periodontal ligament stem cells. However, limited data are available on how SPMs can regulate the regenerative properties of human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. Thus, we measured the impact of MaR1 and RvE1 in an in vitro model of hPDLSC under stimulation with IL-1ß and TNF-α by evaluating pluripotency, migration, viability/cell death, periodontal ligament markers (α-smooth muscle actin, tenomodulin, and periostin), cementogenic-osteogenic differentiation, and phosphoproteomic perturbations. The data showed that the pro-inflammatory milieu suppresses pluripotency, viability, and migration of hPDLSCs; MaR1 and RvE1 both restored regenerative capacity by increasing hPDLSC viability, accelerating wound healing/migration, and up-regulating periodontal ligament markers and cementogenic-osteogenic differentiation. Protein phosphorylation perturbations were associated with the SPM-induced regenerative capacity of hPDLSCs. Together, these results demonstrate that MaR1 and RvE1 restore or improve the regenerative properties of highly specialized stem cells when inflammation is present and offer opportunities for direct pharmacologic treatment of lost tissue integrity.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ligamento Periodontal/fisiología , Regeneración/fisiología , Células Madre/metabolismo , Células Cultivadas , Ácido Eicosapentaenoico/metabolismo , Humanos , Inflamación/metabolismo
19.
FEMS Microbiol Lett ; 366(2)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649298

RESUMEN

The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the exopolysaccharide xanthan, a commercially relevant thickening agent produced commonly by industrial scale fermentation. This work was inspired by the observation that methionine is an inhibitor of xanthan formation in growth experiments. Therefore, the global effects of methionine supplementation were characterized through cultivation experiments, genome-wide microarray hybridizations and qRT-PCR. Specific pull down of DNA-binding proteins by using the intergenic regions upstream of xanA, gumB and gumD led to the identification of six transcriptional regulators, among them the LysR-family transcriptional regulator CysB. An insertion mutant of this gene was analyzed by growth experiments, microarray experiments and qRT-PCR. Based on our experimental data, we developed a model that describes the methionine-dependent co-regulation of xanthan and sulfur-containing compounds in Xanthomonas. These data substantially contribute to better understand the impact of methionine as a compound in xanthan production media used in industrial fermentations.


Asunto(s)
Aminoácidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/biosíntesis , Azufre/metabolismo , Xanthomonas campestris/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/crecimiento & desarrollo
20.
Front Physiol ; 10: 925, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417410

RESUMEN

Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA