Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857404

RESUMEN

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Asunto(s)
Frío , Canal de Potasio KCNQ1 , Animales , Masculino , Femenino , Ratones , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/genética , Ratones Noqueados , Ganglios Espinales/metabolismo , Sensación Térmica/fisiología , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Ratones Endogámicos C57BL , Potenciales de Acción/fisiología , Caracteres Sexuales , Mentol/farmacología
2.
Adv Exp Med Biol ; 1441: 1033-1055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884768

RESUMEN

Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.


Asunto(s)
Arritmias Cardíacas , Predisposición Genética a la Enfermedad , Mutación , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Predisposición Genética a la Enfermedad/genética , Canales Iónicos/genética , Fenotipo , Electrocardiografía
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894977

RESUMEN

Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome del Seno Enfermo/genética , Mutación , Arritmias Cardíacas/metabolismo , Acetilcolina/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo
4.
Europace ; 24(2): 331-339, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34351417

RESUMEN

The aims of this centre-based survey, promoted and disseminated by the European Heart Rhythm Association (EHRA) was to investigate the current practice for the investigation of Sudden Unexplained Death in the Young (SUDY) amongst European countries. An online questionnaire composed of 21 questions was submitted to the EHRA Research Network, European Cardiac Arrhythmia Genetics (ECGen) Focus Group members, and European Reference Network GUARD-Heart healthcare partners. There were 81 respondents from 24 European countries. The majority (78%) worked in a dedicated clinic focusing on families with inherited cardiac conditions and/or SUDY or had easy access to a nearby one. On average, an autopsy was performed in 43% of SUDY cases. Macroscopic examination of the body and all organs were completed in 71% of cases undergoing autopsy, and expert cardiac examination in 32%. Post-mortem genetic testing was requested on average in 37% of Sudden Arrhythmic Death Syndrome (SADS) cases, but not at all by 20% of survey respondents. Psychological support and bereavement counselling for SADS/SUDY families were available for ≤50% of participants. Whilst electrocardiogram (ECG) and echocardiography were largely employed to investigate SADS relatives, there was an inconsistent approach to the use of provocative testing with exercise ECG, sodium channel blocking drugs, and/or epinephrine and genetic testing. The survey highlighted a significant heterogeneity of service provision and variable adherence to current recommendations for the investigation of SUDY, partly attributable to the availability of dedicated units and specialist tests, genetic evaluation, and post-mortem examination.


Asunto(s)
Muerte Súbita Cardíaca , Predisposición Genética a la Enfermedad , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/genética , Muerte Súbita Cardíaca/epidemiología , Europa (Continente)/epidemiología , Humanos , Encuestas y Cuestionarios
5.
J Am Soc Nephrol ; 32(11): 2885-2899, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34607910

RESUMEN

BACKGROUND: Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS: We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS: In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS: Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.


Asunto(s)
Cardiomiopatía Dilatada/genética , Hipercalciuria/genética , Enfermedades Renales/genética , Proteínas de Unión al GTP Monoméricas/genética , Mutación Missense , Nefrocalcinosis/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Serina-Treonina Quinasas TOR/metabolismo , Cardiomiopatía Dilatada/metabolismo , Femenino , Células HEK293 , Humanos , Hipercalciuria/metabolismo , Enfermedades Renales/metabolismo , Túbulos Renales Distales/metabolismo , Masculino , Modelos Moleculares , Natriuresis/genética , Nefrocalcinosis/metabolismo , Linaje , Conformación Proteica , Defectos Congénitos del Transporte Tubular Renal/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Transducción de Señal , Secuenciación del Exoma , Secuenciación Completa del Genoma
6.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430690

RESUMEN

Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction.


Asunto(s)
Canales de Calcio Tipo L , Epilepsia , Síndrome del Seno Enfermo , Humanos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Isoformas de Proteínas/metabolismo , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/metabolismo , Secuenciación del Exoma
7.
BMC Cardiovasc Disord ; 21(1): 174, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849460

RESUMEN

BACKGROUND: Autopsies regularly aim to clarify the cause of death; however, relatives may directly benefit from autopsy results in the setting of heritable traits ("mortui vivos docent"). CASE PRESENTATION: A case of a sudden unexpected cardiac death of a 5.5-months-old child is presented. Autopsy and thorough postmortem cardiac examinations revealed a massively enlarged heart with endomyocardial fibroelastosis. Postmortem molecular testing (molecular autopsy) revealed an unusual combination of two biparental MYBPC3 gene mutations likely to underlie the cardiac abnormalities. Thus, the molecular autoptic findings also had consequences for the relatives of the deceased child and impact on further family planning. CONCLUSIONS: The presented case highlights the need for clinical autopsies including cardiac examinations and postmortem molecular testing; it also paves the way for further cascade screening of family members for cardiac disease, if a distinct genetic disorder is suspected.


Asunto(s)
Proteínas Portadoras/genética , Muerte Súbita Cardíaca/etiología , Fibroelastosis Endocárdica/genética , Mutación , Autopsia , Cardiomegalia/genética , Cardiomegalia/patología , Análisis Mutacional de ADN , Muerte Súbita Cardíaca/patología , Fibroelastosis Endocárdica/patología , Resultado Fatal , Predisposición Genética a la Enfermedad , Herencia , Heterocigoto , Humanos , Lactante , Masculino , Miocardio/patología , Linaje , Fenotipo
8.
Eur Heart J ; 41(30): 2878-2890, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32533187

RESUMEN

AIMS: Brugada syndrome (BrS) is characterized by a unique electrocardiogram (ECG) pattern and life-threatening arrhythmias. However, the Type 1 Brugada ECG pattern is often transient, and a genetic cause is only identified in <25% of patients. We sought to identify an additional biomarker for this rare condition. As myocardial inflammation may be present in BrS, we evaluated whether myocardial autoantibodies can be detected in these patients. METHODS AND RESULTS: For antibody (Ab) discovery, normal human ventricular myocardial proteins were solubilized and separated by isoelectric focusing (IEF) and molecular weight on two-dimensional (2D) gels and used to discover Abs by plating with sera from patients with BrS and control subjects. Target proteins were identified by mass spectrometry (MS). Brugada syndrome subjects were defined based on a consensus clinical scoring system. We assessed discovery and validation cohorts by 2D gels, western blots, and ELISA. We performed immunohistochemistry on myocardium from BrS subjects (vs. control). All (3/3) 2D gels exposed to sera from BrS patients demonstrated specific Abs to four proteins, confirmed by MS to be α-cardiac actin, α-skeletal actin, keratin, and connexin-43, vs. 0/8 control subjects. All (18/18) BrS subjects from our validation cohorts demonstrated the same Abs, confirmed by western blots, vs. 0/24 additional controls. ELISA optical densities for all Abs were elevated in all BrS subjects compared to controls. In myocardium obtained from BrS subjects, each protein, as well as SCN5A, demonstrated abnormal protein expression in aggregates. CONCLUSION: A biomarker profile of autoantibodies against four cardiac proteins, namely α-cardiac actin, α-skeletal actin, keratin, and connexin-43, can be identified from sera of BrS patients and is highly sensitive and specific, irrespective of genetic cause for BrS. The four involved proteins, along with the SCN5A-encoded Nav1.5 alpha subunit are expressed abnormally in the myocardium of patients with BrS.


Asunto(s)
Síndrome de Brugada , Arritmias Cardíacas , Autoanticuerpos , Síndrome de Brugada/diagnóstico , Electrocardiografía , Ventrículos Cardíacos , Humanos
9.
J Mol Cell Cardiol ; 145: 74-83, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32535041

RESUMEN

Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Moléculas de Adhesión Celular/genética , Predisposición Genética a la Enfermedad , Proteínas Musculares/genética , Potenciales de Acción , Animales , Bloqueo Atrioventricular/genética , Bradicardia/complicaciones , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Estudios de Asociación Genética , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/patología , Heterocigoto , Homocigoto , Humanos , Leucocitos/metabolismo , Ratones Transgénicos , Proteínas Musculares/metabolismo , Mutación/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , ARN/metabolismo , Nodo Sinoatrial/metabolismo , Estrés Fisiológico , Secuenciación del Exoma , Xenopus laevis
10.
Herz ; 45(3): 243-251, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32170341

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC), an inherited heart muscle disease, is characterized by a progressive replacement of viable, in its classic form predominantly right ventricular myocardium by fibro-fatty tissue. These pathological alterations may provide the substrate for the occurrence of life-threatening ventricular tachyarrhythmias, heart failure, and sudden cardiac death. The clinical course in this young patient population is highly variable, diagnostic algorithms complex, and individualized treatment strategies yet to be refined. Molecular genetic analyses have revealed both heterozygous and compound mutations in genes encoding for desmosomal proteins that are an integral part of the intercellular architecture. However, its diagnostic and prognostic impact remains to be elucidated. Over time, other genetic (i.e., non-desmosomal) and non-genetic causes (phenocopies) have been identified, and biventricular and left dominant manifestations (ALVC) are known. Based on a qualitative scoring system, initially published in 1994, diagnostic criteria were revised and substantiated by quantitative criteria in 2010 followed by a critical appraisal 9 years later. In 1995, ARVC was included in the classification of cardiomyopathies of the World Health Organization but was recently proposed to be subsumed in a broader concept termed "arrhythmogenic cardiomyopathy" (AC). This review provides an update on the clinical diagnosis and differential diagnoses of ARVC as well as our current understanding of the underlying pathogenesis, and it sheds light on new efforts in risk stratification.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Arritmias Cardíacas , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/terapia , Ventrículos Cardíacos , Humanos , Miocardio
11.
Int J Mol Sci ; 21(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203140

RESUMEN

Complex neuropsychiatric-cardiac syndromes can be genetically determined. For the first time, the authors present a syndromal form of short QT syndrome in a 34-year-old German male patient with extracardiac features with predominant psychiatric manifestation, namely a severe form of secondary high-functioning autism spectrum disorder (ASD), along with affective and psychotic exacerbations, and severe dental enamel defects (with rapid wearing off his teeth) due to a heterozygous loss-of-function mutation in the CACNA1C gene (NM_000719.6: c.2399A > C; p.Lys800Thr). This mutation was found only once in control databases; the mutated lysine is located in the Cav1.2 calcium channel, is highly conserved during evolution, and is predicted to affect protein function by most pathogenicity prediction algorithms. L-type Cav1.2 calcium channels are widely expressed in the brain and heart. In the case presented, electrophysiological studies revealed a prominent reduction in the current amplitude without changes in the gating behavior of the Cav1.2 channel, most likely due to a trafficking defect. Due to the demonstrated loss of function, the p.Lys800Thr variant was finally classified as pathogenic (ACMG class 4 variant) and is likely to cause a newly described Cav1.2 channelopathy.


Asunto(s)
Arritmias Cardíacas , Trastorno Autístico , Canales de Calcio Tipo L , Canalopatías , Esmalte Dental , Mutación con Pérdida de Función , Trastornos del Humor , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Canalopatías/patología , Esmalte Dental/anomalías , Esmalte Dental/metabolismo , Esmalte Dental/patología , Humanos , Masculino , Trastornos del Humor/genética , Trastornos del Humor/metabolismo , Trastornos del Humor/patología
12.
Biochem Biophys Res Commun ; 518(3): 500-505, 2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434612

RESUMEN

We recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by in vitro actin polymerization assays. Since polymerization/de-polymerization is important for the activation of Rho-GTPase-mediated serum response factor (SRF)-signaling, we studied the effect of G247D mutation using luciferase assay. Overexpression of native human ACTC1 in neonatal rat cardiomyocytes (NRVCMs) strongly activated SRF-signaling both in C2C12 cells and NRVCMs, whereas, G247D mutation abolished this activation. Mechanistically, we found reduced GTP-bound Rho-GTPase and increased nuclear localization of globular actin in NRVCMs overexpressing mutant ACTC1 possibly causing inhibition of SRF-signaling activation. In conclusion, our data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.


Asunto(s)
Actinas/genética , Miocitos Cardíacos/patología , Mutación Puntual , Factores de Transcripción/metabolismo , Actinas/metabolismo , Animales , Animales Recién Nacidos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Línea Celular , Células Cultivadas , Humanos , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal
13.
Circ Res ; 120(10): e33-e44, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28219978

RESUMEN

RATIONALE: Familial sinus node and atrioventricular conduction dysfunction is a rare disorder that leads to paroxysmal dizziness, fatigue, and syncope because of a temporarily or permanently reduced heart rate. To date, only a few genes for familial sinus and atrioventricular conduction dysfunction are known, and the majority of cases remain pathogenically unresolved. OBJECTIVE: We aim to identify the disease gene in a large 3-generation family (n=25) with autosomal dominant sinus node dysfunction (SND) and atrioventricular block (AVB) and to characterize the mutation-related pathomechanisms in familial SND+AVB. METHODS AND RESULTS: Genome-wide linkage analysis mapped the SND+AVB disease locus to chromosome 7q21.1-q31.1 (2-point logarithm of the odds score: 4.64; θ=0); in this region, targeted exome sequencing identified a novel heterozygous mutation (p.Arg52Leu) in the GNB2 gene that strictly cosegregated with the SND+AVB phenotype. GNB2 encodes the ß2 subunit (Gß2) of the heterotrimeric G-protein complex that is being released from G-protein-coupled receptors on vagal stimulation. In 2 heterologous expression systems (HEK-293T cells and Xenopus laevis oocytes), an enhanced activation of the G-protein-activated K+ channel (GIRK; Kir3.1/Kir3.4) was shown when mutant Gß2 was coexpressed with Gγ2; this was in contrast to coexpression of mutant Gß2-Gγ2 with other cardiac ion channels (HCN4, HCN2, and Cav1.2). Molecular dynamics simulations suggested a reduced binding property of mutant Gß2 to cardiac GIRK channels when compared with native Gß2. CONCLUSIONS: A GNB2 gene mutation is associated with familial SND+AVB and leads to a sustained activation of cardiac GIRK channels, which is likely to hyperpolarize the myocellular membrane potential and thus reduces their spontaneous activity. Our findings describe for the first time a role of a mutant G-protein in the nonsyndromic pacemaker disease because of GIRK channel activation.


Asunto(s)
Bloqueo Atrioventricular/genética , Bloqueo Atrioventricular/fisiopatología , Proteínas de Unión al GTP/genética , Mutación/genética , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/fisiopatología , Adulto , Secuencia de Aminoácidos , Bloqueo Atrioventricular/diagnóstico , Femenino , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Síndrome del Seno Enfermo/diagnóstico , Nodo Sinoatrial/fisiología , Adulto Joven
14.
Cell Physiol Biochem ; 49(3): 1197-1207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30196304

RESUMEN

BACKGROUND/AIMS: The hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 contributes significantly to the generation of basic cardiac electrical activity in the sinus node and is a mediator of modulation by ß-adrenergic stimulation. Heterologous expression of sick sinus syndrome (SSS) and bradycardia associated mutations within the human HCN4 gene results in altered channel function. The main aim was to describe the functional characterization of three (two novel and one known) missense mutations of HCN4 identified in families with SSS. METHODS: Here, the two-electrode voltage clamp technique on Xenopus laevis oocytes and confocal imaging on transfected COS7 cells respectively, were used to analyze the functional effects of three HCN4 mutations; R378C, R550H, and E1193Q. Membrane surface expressions of wild type and the mutant channels were assessed by confocal microscopy, chemiluminescence assay, and Western blot in COS7 and HeLa cells. RESULTS: The homomeric mutant channels R550H and E1193Q showed loss of function through increased rates of deactivation and distinctly reduced surface expression in all three homomeric mutant channels. HCN4 channels containing R550H and E1193Q mutant subunits only showed minor effects on the voltage dependence and rates of activation/deactivation. In contrast, homomeric R378C exerted a left-shifted activation curve and slowed activation kinetics. These effects were reduced in heteromeric co-expression of R378C with wild-type (WT) channels. CONCLUSION: Dysfunction of homomeric/heteromeric mutant HCN4-R378C, R550H, and E1193Q channels in the present study was primarily caused by loss of function due to decreased channel surface expression.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Síndrome del Seno Enfermo/genética , Potenciales de Acción/fisiología , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Microscopía Confocal , Simulación de Dinámica Molecular , Proteínas Musculares/química , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/química , Estructura Terciaria de Proteína , Xenopus laevis
16.
Proc Natl Acad Sci U S A ; 111(50): E5383-92, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453094

RESUMEN

Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and ß subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Síndrome de Jervell-Lange Nielsen/tratamiento farmacológico , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/fisiopatología , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Fenotipo , Potenciales de Acción/fisiología , Análisis de Varianza , Secuencia de Bases , Línea Celular , Genes Recesivos/genética , Ingeniería Genética , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense/genética , Miocitos Cardíacos/fisiología , Análisis de Secuencia de ADN
17.
Eur Heart J ; 37(7): 640-50, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26271031

RESUMEN

BACKGROUND: Modulation of cardiac repolarization by sexual hormones is controversial and hormonal effects on ion channels remain largely unknown. In the present translational study, we therefore assessed the relationship between QTc duration and gonadal hormones and studied underlying mechanisms. METHODS AND RESULTS: We measured hormone levels and QTc intervals in women during clomiphene stimulation for infertility and women before, during, and after pregnancy. Three heterozygous LQT-2 patients (KCNH2-p.Arg752Pro missense mutation) and two unaffected family members additionally were studied during their menstrual cycles. A comprehensive cellular and molecular analysis was done to identify the mechanisms of hormonal QT-interval regulation. High estradiol levels, but neither progesterone nor estradiol/progesterone ratio, inversely correlated with QTc. Consistent with clinical data, in vitro estradiol stimulation (60 pmol/L, 48 h) enhanced IKCNH2. This increase was mediated by estradiol receptor-α-dependent promotion of KCNH2-channel trafficking to the cell membrane. To study the underlying mechanism, we focused on heat-shock proteins. The heat-shock protein-90 (Hsp90) inhibitor geldanamycin abolished estradiol-induced increase in IKCNH2. Geldanamycin had no effect on KCNH2 transcription or translation; nor did it affect expression of estradiol receptors and chaperones. Estradiol enhanced the physical interaction of KCNH2-channel subunits with heat-shock proteins and augmented ion-channel trafficking to the membrane. CONCLUSION: Elevated estradiol levels were associated with shorter QTc intervals in healthy women and female LQT-2 patients. Estradiol acts on KCNH2 channels via enhanced estradiol-receptor-α-mediated Hsp90 interaction, augments membrane trafficking and thereby increases repolarizing current. These results provide mechanistic insights into hormonal control of human ventricular repolarization and open novel therapeutic avenues.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Estradiol/fisiología , Adulto , Benzoquinonas/farmacología , Clomifeno/uso terapéutico , Canal de Potasio ERG1/genética , Electrocardiografía , Inhibidores Enzimáticos/farmacología , Estradiol/metabolismo , Femenino , Fármacos para la Fertilidad Femenina/uso terapéutico , Voluntarios Sanos , Sistema de Conducción Cardíaco/efectos de los fármacos , Heterocigoto , Humanos , Infertilidad Femenina/genética , Lactamas Macrocíclicas/farmacología , Síndrome de QT Prolongado/genética , Ciclo Menstrual , Mutación Missense/genética , Embarazo , Complicaciones Cardiovasculares del Embarazo/genética , Estudios Prospectivos , Transporte de Proteínas/genética
18.
Basic Res Cardiol ; 111(2): 14, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26803770

RESUMEN

Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Nav1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.


Asunto(s)
Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Trastorno del Sistema de Conducción Cardíaco , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado/genética , Técnicas de Placa-Clamp , Fenotipo
19.
Basic Res Cardiol ; 111(3): 36, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27138930

RESUMEN

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia with a strong genetic component. Molecular pathways involving the homeodomain transcription factor Shox2 control the development and function of the cardiac conduction system in mouse and zebrafish. Here we report the analysis of human SHOX2 as a potential susceptibility gene for early-onset AF. To identify causal variants and define the underlying mechanisms, results from 378 patients with early-onset AF before the age of 60 years were analyzed and compared to 1870 controls or reference datasets. We identified two missense mutations (p.G81E, p.H283Q), that were predicted as damaging. Transactivation studies using SHOX2 targets and phenotypic rescue experiments in zebrafish demonstrated that the p.H283Q mutation severely affects SHOX2 pacemaker function. We also demonstrate an association between a 3'UTR variant c.*28T>C of SHOX2 and AF (p = 0.00515). Patients carrying this variant present significantly longer PR intervals. Mechanistically, this variant creates a functional binding site for hsa-miR-92b-5p. Circulating hsa-miR-92b-5p plasma levels were significantly altered in AF patients carrying the 3'UTR variant (p = 0.0095). Finally, we demonstrate significantly reduced SHOX2 expression levels in right atrial appendages of AF patients compared to patients with sinus rhythm. Together, these results suggest a genetic contribution of SHOX2 in early-onset AF.


Asunto(s)
Fibrilación Atrial/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/genética , Adolescente , Animales , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación Missense , Reacción en Cadena de la Polimerasa , Transfección , Adulto Joven , Pez Cebra
20.
Europace ; 18(12): 1866-1872, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26941339

RESUMEN

AIMS: Brugada syndrome (BrS) is characterized by a typical electrocardiogram (ECG) pattern in right precordial leads (V1-V3; so-called type 1 ECG) and an increased risk of sudden cardiac death due to ventricular fibrillation. Annual cardiac event rates vary from 0.5% in asymptomatic to 7.7% in high-risk patients. So far, spontaneous occurrence of the type 1 ECG, survived cardiac arrest, and/or documented ventricular arrhythmias are main risk predictors, whereas other factors (e.g. family history or genotype) are not applicable for risk stratification. In this study, we investigated the relationship between Tpeak-Tend intervals (TpTe) as a novel ECG parameter for the occurrence of cardiac arrhythmias. METHODS AND RESULTS: Clinical and genetic data of 78 unrelated BrS patients (male: n = 57, age: 45 ± 14 years) were retrospectively analysed for medical history, gene mutation, and ECG parameters (in particular heart rate, PQ, QRS, QT, and TpTe) as obtained after digital measurements. TpTe in ECG lead V1 (87 ± 30 vs. 71 ± 27 ms; P = 0.017) and the TpTe/QT ratio (0.24 vs. 0.19; P = 0.018) were significantly higher in high-risk BrS patients than in other BrS patients. In the other right precordial leads typically indicative for BrS, no significant difference was noted. CONCLUSION: Assessment of the TpTe interval or the TpTe/QT ratio in lead V1 is potentially useful as a non-invasive risk marker for BrS patients with life-threatening arrhythmias.


Asunto(s)
Síndrome de Brugada/diagnóstico , Adulto , Síndrome de Brugada/genética , Muerte Súbita Cardíaca/epidemiología , Electrocardiografía , Femenino , Alemania , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.5/genética , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Análisis de Secuencia , Fibrilación Ventricular/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA