Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 17(26): 6445-6460, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34132722

RESUMEN

Artificial model colloids are of special interest in the development of advanced sterile filters, as they are able to efficiently separate pleomorphic, highly deformable and infectious bacteria such as mycoplasma, which, until now, has been considered rather challenging and laborious. This study presents a full range of different soft to super soft synthetic polymeric microgels, including two types with similar hydrodynamic mean diameter, i.e., 180 nm, and zeta potential, i.e., -25 ± 10 mV, but different deformability, synthesized by inverse miniemulsion terpolymerization of acrylamide, sodium acrylate and N,N'-methylenebisacrylamide. These microgels were characterized by means of dynamic, electrophoretic and static light scattering techniques. In addition, the deformability of the colloids was investigated by filter cake compressibility studies during ultrafiltration in dead-end mode, analogously to a study of real mycoplasma, i.e., Acholeplasma laidlawii, to allow for a direct comparison. The results indicate that the variation of the synthesis parameters, i.e., crosslinker content, polymeric solid content and content of sodium acrylate, has a significant impact on the swelling behavior of the microgels in aqueous solution as well as on their deformability under filtration conditions. A higher density of chemical crosslinking points results in less swollen and more rigid microgels. Furthermore, these parameters determine electrokinetic properties of the more or less permeable colloids. Overall, it is shown that these soft synthetic microgels can be obtained with tailor-made properties, covering the size of smallest species of and otherwise similar to real mycoplasma. This is a relevant first step towards the future use of synthetic microgels as mimics for mycoplasma.


Asunto(s)
Microgeles , Mycoplasma , Coloides , Polímeros , Ultrafiltración
2.
New Phytol ; 226(1): 111-125, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901219

RESUMEN

Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2  = 0.85), and negatively to precipitation in May (R2  = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.


Asunto(s)
Fagus , Bosques , Carbono , Fagus/crecimiento & desarrollo , Estaciones del Año , Árboles , Tiempo (Meteorología)
3.
Unfallchirurg ; 123(5): 368-374, 2020 May.
Artículo en Alemán | MEDLINE | ID: mdl-31451842

RESUMEN

BACKGROUND: Orthogeriatric co-management of proximal femoral fractures has been proven to effectively reduce mortality rates. This involves extending resources in hospitals treating these patients as well as dealing with the possibility of prolonged periods of hospitalization. The increase in costs of orthogeriatric co-management are best illustrated by the implementation of geriatric early rehabilitation complex treatment. In view of the problems concerning billing this complex treatment, an online survey was carried among certified geriatric trauma centers of the German Trauma Society (DGU®). METHODS: Based on a trauma-geriatric consensus 20 questions were formulated by the Academy of Trauma Surgery (AUC) as an online questionnaire and sent to all 75 certified geriatric trauma centers. Apart from a description of the results, a subanalysis based on the figures presented by the case closing departments (geriatrics or trauma surgery) was included. The questions covered a 2-year period of experiences from 2016 to 2018. RESULTS: A total of 26 of the 75 certified geriatric trauma centers participated (35%). A continuous increase in cost analysis evaluations by the medical services of the health funds was observed. A rise from 38% in 2016 to 45% in 2018 was seen. An analogous rejection trend from 16% to 24% during this period was evident as well. Subanalysis revealed significantly higher cost evaluation by the medical services of the health funds and cost rejection rates if trauma departments were the case closing disciplines. CONCLUSION: The online survey revealed significantly higher assessment and rejection rates when compared to other hospital services. This could prove potentially detrimental to the future of orthogeriatric co-management.


Asunto(s)
Administración Financiera , Geriatría , Centros Traumatológicos , Anciano , Certificación , Evaluación Geriátrica , Humanos , Encuestas y Cuestionarios
4.
Cell Tissue Res ; 374(1): 121-136, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29752569

RESUMEN

Diseases associated with the accumulation of lipid droplets are increasing in western countries. Lipid droplet biogenesis, structure and degradation are regulated by proteins of the perilipin family. Perilipin 5 has been shown to regulate basal lipolysis in oxidative tissues. We examine perilipin 5 in normal human tissues and in diseases using protein biochemical and microscopic techniques. Perilipin 5 was constitutively located at small lipid droplets in skeletal myocytes, cardiomyocytes and brown adipocytes. In addition, perilipin 5 was detected in the epithelia of the gastrointestinal and urogenital tract, especially in hepatocytes, the mitochondria-rich parietal cells of the stomach, tubular kidney cells and ductal cells of the salivary gland and pancreas. Granular cytoplasmic expression, without a lipid droplet-bound localization was detected elsewhere. In cardiomyopathies, in skeletal muscle diseases and during hepatocyte steatogenesis, perilipin 5 was upregulated and localized to larger and more numerous lipid droplets. In steatotic human hepatocytes, perilipin 5 was moderately increased and colocalized with perilipins 1 and 2 but not with perilipin 3 at lipid droplets. In liver diseases implicated in alterations of mitochondria, such as mitochondriopathies, alcoholic liver disease, Wilson's disease and acute liver injury, perilipin 5 was frequently localized to small lipid droplets and less in the cytoplasm. In tumorigenesis, perilipin 5 was especially upregulated in lipo-, leio- and rhabdomyosarcoma and hepatocellular and renal cell carcinoma. In summary, our study provides evidence that perilipin 5 is not restricted to certain cell types but localizes to distinct lipid droplet subpopulations reflecting a possible function in oxidative energy supply in normal tissues and in diseases.


Asunto(s)
Gotas Lipídicas/metabolismo , Especificidad de Órganos , Perilipina-5/metabolismo , Secuencia de Aminoácidos , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Músculo Estriado/metabolismo , Perilipina-5/química , Fosforilación
5.
Ecology ; 99(10): 2295-2307, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29989166

RESUMEN

Despite growing interest in incorporating intraspecific variation of functional traits in community-level studies, it remains unclear whether species classified into functional groups based on interspecific trait differences are similar regarding their variation in trait expression in response to varying plant diversity and composition in local communities. In a large biodiversity experiment (Jena Experiment) designed on a trait-based a priori definition of functional groups (grasses, legumes, small herbs, tall herbs), we studied means, extent of variation (coefficient of variation across communities) and plasticity to increased plant diversity (slopes over a logarithmic species richness ranging from 1, 2, 4, 8 and 16 to 60 species) for nine functional traits. Species means and extent of variation in traits related to nitrogen (N) acquisition and N use differed among functional groups and were more similar in phylogenetically closely related species than expected by chance. Species in the same functional group showed a weak phylogenetic signal and varied widely in means and extent of variation in traits related to shoot architecture and to a smaller extent in leaf traits related to carbon acquisition. This indicated that functional groups were less distinguishable in light than in nitrogen acquisition strategies. The direction and degree of trait plasticity to increasing species richness did not show a phylogenetic signal and were not different among functional groups, but varied largely among species within functional groups. Correlation structures in trait means, extent of trait variation and trait plasticity revealed functional tradeoffs in the acquisition of nitrogen and light across species. While correlations between trait means and extent of trait variation varied from trait to trait (positive, negative or unrelated), trait means and trait plasticity were mostly unrelated. Our results suggest that the concept of functional groups is viable, but context-specific trait measurements are required to improve our understanding about the functional significance of intraspecific trait variation and interspecific trait differences in local plant communities.


Asunto(s)
Biodiversidad , Pradera , Filogenia , Poaceae , Especificidad de la Especie
6.
Ecology ; 99(5): 1214-1226, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29570784

RESUMEN

Plant functional traits may explain the positive relationship between species richness and ecosystem functioning, but species-level trait variation in response to growth conditions is often ignored in trait-based predictions of community performance. In a large grassland biodiversity experiment (Jena Experiment), we measured traits on plants grown as solitary individuals, in monocultures or in mixtures. We calculated two measures of community-level trait composition, i.e., community-weighted mean traits (CWM) and trait diversity (Rao's quadratic entropy; FD) based on different contexts in which traits were measured (trait origins). CWM and FD values of the different measurement origins were then compared regarding their power to predict community biomass production and biodiversity effects quantified with the additive partitioning method. Irrespective of trait origin, models combining CWM and FD values as predictors best explained community biomass and biodiversity effects. CWM values based on monoculture, mixture-mean or community-specific trait data were similarly powerful predictors, but predictions became worse when trait values originated from solitary-grown individuals. FD values based on monoculture traits were the best predictors of community biomass and net biodiversity effects, while FD values based on community-specific traits were the best predictors for complementarity and selection effects. Traits chosen as best CWM predictors were not strongly affected by trait origin but traits chosen as best FD predictors varied strongly dependent on trait origin and altered the predictability of community performance. We conclude that by adjusting their functional traits to species richness and even specific community compositions, plants can change community-level trait compositions, thereby also changing community biomass production and biodiversity effects. Incorporation of these plastic trait adjustments of plants in trait-based ecology can improve its predictive power in explaining biodiversity-ecosystem functioning relationships.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Plantas
7.
J Nanobiotechnology ; 16(1): 39, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29653575

RESUMEN

BACKGROUND: Virus-like-particles (VLPs) are attractive nanoparticulate scaffolds for broad applications in material/biological sciences and medicine. Prior their functionalization, specific adaptations have to be carried out. These adjustments frequently lead to disordered particles, but the particle integrity is an essential factor for the VLP suitability. Therefore, major requirements for particle stabilization exist. The objective of this study was to evaluate novel stabilizing elements for functionalized chimeric hepatitis B virus core antigen virus-like particles (HBcAg-VLP), with beneficial characteristics for vaccine development, imaging or delivery. RESULTS: The effects of a carboxy-terminal polyhistidine-peptide and an intradimer disulfide-bridge on the stability of preclinically approved chimeric HBcAg-VLPs were assessed. We purified recombinant chimeric HBcAg-VLPs bearing different modified C-termini and compared their physical and chemical particle stability by quantitative protein-biochemical and biophysical techniques. We observed lower chemical resistance of T = 3- compared to T = 4-VLP (triangulation number) capsids and profound impairment of accessibility of hexahistidine-peptides in assembled VLPs. Histidines attached to the C-terminus were associated with superior mechanical and/or chemical particle stability depending on the number of histidine moieties. A molecular modeling approach based on cryo-electron microscopy and biolayer interferometry revealed the underlying structural mechanism for the strengthening of the integrity of VLPs. Interactions triggering capsid stabilization occur on a highly conserved residue on the basis of HBcAg-monomers as well as on hexahistidine-peptides of adjacent monomers. This new stabilization mechanism appears to mimic an evolutionary conserved stabilization concept for hepadnavirus core proteins. CONCLUSIONS: These findings establish the genetically simply transferable C-terminal polyhistidine-peptide as a general stabilizing element for chimeric HBcAg-VLPs to increase their suitability.


Asunto(s)
Antígenos del Núcleo de la Hepatitis B/metabolismo , Histidina/metabolismo , Oligopéptidos/metabolismo , Proteínas Recombinantes/metabolismo , Virión/metabolismo , Antígenos del Núcleo de la Hepatitis B/aislamiento & purificación , Modelos Moleculares , Control de Calidad , Proteínas Recombinantes/aislamiento & purificación , Estrés Fisiológico , Virión/ultraestructura
8.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28469023

RESUMEN

In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokinetic stretches, and in which proportion cross-bridges and non-cross-bridges contribute to muscle force. Here, we show that maximally activated single skinned rat muscle fibres behave (almost across the entire working range) like linear springs. The force slope is about three times the maximum isometric force per optimal length. Cross-bridge and non-cross-bridge contributions to the muscle force were investigated using an actomyosin inhibitor. The experiments revealed a nonlinear progressive contribution of non-cross-bridge forces and suggest a nonlinear cross-bridge contribution similar to the active force-length relationship (though with increased optimal length and maximum isometric force). The linear muscle behaviour might significantly reduce the control effort. Moreover, the observed slight increase in slope with initial length is in accordance with current models attributing the non-cross-bridge force to titin.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/fisiología , Citoesqueleto de Actina , Actomiosina/fisiología , Animales , Conectina/fisiología , Contracción Isométrica , Ratas
10.
Nature ; 468(7323): 553-6, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20981010

RESUMEN

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.


Asunto(s)
Biodiversidad , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Animales , Densidad de Población
11.
Sci Rep ; 13(1): 15764, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737457

RESUMEN

We present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products. The approach is particularly applicable to particles in the size range of 100 nm and below, which is highly relevant for pharmaceutical products-both biologics and nanoparticles. The method can be applied as well in other fields, including structural biology and environmental sciences.


Asunto(s)
Nanopartículas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X , ARN Mensajero/genética
12.
BMC Womens Health ; 12: 24, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22906181

RESUMEN

BACKGROUND: Abnormal uterine bleeding is often investigated in clinical studies and critical to identify during gynecological consultation. The current standard for quantification of menstrual blood loss is the alkaline-hematin-method. However, this method is expensive and inconvenient for patients. Bleeding diaries, although widely used, provide only qualitative information on menstrual blood loss. Other methods have been developed, but still do not provide reliable quantitative data. METHODS: We estimated blood loss volume using data from two clinical studies in women suffering abnormal menstrual bleeding. These estimations were derived from mixed linear models based on diary data, hematological parameters and age. To validate the models, we applied our results to data from a third study with a similar patient population. RESULTS: The resulting best fitting model uses diary entries on bleeding intensity at a particular day, information on occurrence and frequency of single bleeding intensities in defined time windows, hemoglobin and ferritin values and age of the patient all as predictors of menstrual blood loss volume. Sensitivity and specificity for the diagnosis of excessive bleeding were 87% and 70%, respectively. Our model-based estimates reflect the subjective assessment by physicians and patients in the same way as the measured values do.When applying the model to an independent study, we found a correlation of 0.73 between estimated and measured values for the blood loss in a single day. Further models with reduced number of parameters (simplified for easier practical use) still showed correlation values between 0.69 and 0.73. CONCLUSIONS: We present a method for estimating menstrual blood loss volume in women suffering from prolonged or excessive menstrual bleeding. Our statistical model includes entries from bleeding diaries, laboratory parameters and age and produces results which correlate well with data derived by the alkaline-hematin-method. Therefore, this model may be used to estimate menstrual blood loss volume in both routine gynecological counseling and clinical studies.


Asunto(s)
Menorragia/diagnóstico , Menorragia/fisiopatología , Menstruación/fisiología , Salud de la Mujer , Adulto , Volumen Sanguíneo , Femenino , Alemania , Humanos , Modelos Lineales , Productos para la Higiene Menstrual , Medición de Riesgo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Adulto Joven
13.
Elife ; 112022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35353037

RESUMEN

Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies.


Over the last hundred years, human activities including burning of fossil fuels, clearing of forests, and fertilizer use have caused environmental changes that have resulted in many species of plants, animals and other forms of life becoming extinct. Loss of plant species can change the local environment by, for example, altering the availability of nutrients and local communities of microbes in the soil. This may, in turn, cause remaining plant species to develop differently: they may take up fewer resources or become more prone to pathogens, both of which may alter their physical appearance. However, little is known about whether this happens and, if so, how rapidly such changes occur. Since 2002, researchers in Germany have been running a long-term project known as the Jena Experiment to study how plants behave when they grow in communities with different numbers of other plant species. For the experiment, various species of grass and other plants commonly found in grasslands were grown together in different combinations. Some plots contained many species (referred to as "high diversity") and others contained only a few ("low diversity"). Here, Dietrich et al. collected seeds from four grasses grown for 12 years in Jena Experiment plots with two or six plant species. The seeds were then transferred to pots and grown in a greenhouse using soil either from the plot where the seeds originated or from another plot with a different diversity level. To simulate human-made changes in the environment, the team added nitrogen fertilizer or decreased how much they watered some of the plants. The greenhouse experiment showed that after receiving nitrogen fertilizer, the seeds from the high diversity Jena Experiment plots grew into larger plants than the seeds from the low diversity plots. But there was no difference in size when the plants were watered less. Moreover, both fertilizer and watering treatment had different effects on the plants' physical appearance (root and leaf architecture) depending on the soil in which they were growing in. The findings of Dietrich et al. suggest that plants may respond differently to changes in their environment based on their origins and the soil they are growing in. This study provides the first indication that species loss could accelerate a further loss of species due to changes in how the plants develop and the communities of organisms living in the soil.


Asunto(s)
Ecosistema , Plantas , Biodiversidad , Nitrógeno/metabolismo , Plantas/metabolismo , Suelo
14.
Cells ; 11(6)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35326474

RESUMEN

Cancer therapy is an emergent application for mRNA therapeutics. While in tumor immunotherapy, mRNA encoding for tumor-associated antigens is delivered to antigen-presenting cells in spleen and lymph nodes, other therapeutic options benefit from immediate delivery of mRNA nanomedicines directly to the tumor. However, tumor targeting of mRNA therapeutics is still a challenge, since, in addition to delivery of the cargo to the tumor, specifics of the targeted cell type as well as its interplay with the tumor microenvironment are crucial for successful intervention. This study investigated lipoplex nanoparticle-mediated mRNA delivery to spheroid cell culture models of melanoma. Insights into cell-type specific targeting, non-cell-autonomous effects, and penetration capacity in tumor and stroma cells of the mRNA lipoplex nanoparticles were obtained. It was shown that both coculture of different cell types as well as three-dimensional cell growth characteristics can modulate distribution and transfection efficiency of mRNA lipoplex formulations. The results demonstrate that three-dimensional coculture spheroids can provide a valuable surplus of information in comparison to adherent cells. Thus, they may represent in vitro models with enhanced predictivity for the in vivo activity of cancer nanotherapeutics.


Asunto(s)
Melanoma , Nanopartículas , Técnicas de Cocultivo , Humanos , Melanoma/terapia , Nanopartículas/uso terapéutico , ARN , ARN Mensajero/genética , Microambiente Tumoral
15.
Exp Brain Res ; 202(1): 155-69, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20024650

RESUMEN

Sensitivity to many visual stimuli, and, in particular, image displacement, is reduced during a change in fixation (saccade) compared to when the eye is still. In these experiments, we studied the sensitivity of observers to ecologically relevant image translations of large, complex, real world scenes either during horizontal saccades or during fixation. In the first experiment, we found that such displacements were much less detectable during saccades than during fixation. Qualitatively, even when trans-saccadic scene changes were detectable, they were less salient and appeared slower than equivalent changes in the absence of a saccade. Two further experiments followed up on this observation and estimated the perceived magnitude of trans-saccadic apparent motion using a two-interval forced-choice procedure (Experiment 2) and a magnitude estimation procedure (Experiment 3). Both experiments suggest that trans-saccadic displacements were perceived as smaller than equivalent inter-saccadic displacements. We conclude that during saccades, the magnitude of the apparent motion signal is attenuated as well as its detectability.


Asunto(s)
Fijación Ocular , Movimientos Sacádicos , Percepción Visual , Adulto , Medidas del Movimiento Ocular , Femenino , Humanos , Masculino , Estimulación Luminosa , Probabilidad , Psicofísica , Factores de Tiempo , Adulto Joven
16.
Ecology ; 90(12): 3290-302, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20120799

RESUMEN

Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1-16), number of functional groups (1-4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.


Asunto(s)
Biodiversidad , Ecosistema , Poaceae/crecimiento & desarrollo , Biomasa , Modelos Lineales , Poaceae/fisiología , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
17.
Ecol Lett ; 11(4): 338-47, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18190524

RESUMEN

We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.


Asunto(s)
Biodiversidad , Biomasa , Plantas , Geografía
18.
Ann Bot ; 102(1): 113-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18463110

RESUMEN

BACKGROUND AND AIMS: Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed. METHODS: Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment. KEY RESULTS: Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4-7 % of variation. Cultivar identity explained most variation (28-51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities. CONCLUSIONS: The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of different species composition) are important for the maintenance of intra-specific genetic variation.


Asunto(s)
Biodiversidad , Variación Genética , Lolium/crecimiento & desarrollo , Lolium/genética , Biomasa , Dinámica Poblacional , Especificidad de la Especie
19.
Physiol Plant ; 132(4): 440-5, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18333997

RESUMEN

Leaf carbon isotope discrimination (delta13C) was widely considered to directly reflect the rainfall environment in which the leaf developed, but recent observations have queried this. The relationship between delta13C and rainfall was explored in Eucalyptus species growing along a rainfall gradient in Australia. The leaves of 43 species of Eucalyptus and the closely related Corymbia species produced in 2003 were sampled in September 2004 at 50 sites and grouped into 15 locations along a rainfall gradient in southwest Western Australia. At 24 sites, the same species and same trees were sampled as in a study in September 2003 when leaves produced in 2002 were sampled. The rainfall in 2004 was on average 190 mm (range 135-270 mm) higher at all locations than in 2003. In the leaves sampled in 2004, the mean carbon isotope discrimination (delta13C) across the 15 locations decreased 2.9 per thousand per 1000 mm of rainfall, the specific leaf area (SLA) increased by 2.9 m2 kg(-1) per 1000 mm of rainfall and the nitrogen (N) content decreased by 1.56 g m(-2) per 1000 mm of rainfall. In contrast, a comparison between the leaves produced in the drier 2002 year compared with the wetter 2003 year showed that there was a strong correlation (r2= 0.85) between the SLA values between years and a trend for higher values with increasing SLA, but the values of delta(13)C were on average only 0.38 per thousand lower (more negative) at all locations in the wetter year, equivalent to a decrease of 2.0 per thousand per 1000 mm of rainfall. The results suggest that while there may be constitutive differences in leaf morphology, SLA and N content per unit area, increasing rainfall or cloudiness associated with higher rainfall increases SLA and decreases N content per unit area. We conclude that rainfall does not directly influence delta13C, but induces leaf morphological and physiological changes that affect the resultant delta13C.


Asunto(s)
Isótopos de Carbono/metabolismo , Eucalyptus/metabolismo , Hojas de la Planta/metabolismo , Lluvia
20.
J Environ Qual ; 36(2): 396-407, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17255627

RESUMEN

Previous research has shown that plant diversity influences N and P cycles. However, the effect of plant diversity on complete ecosystem N and P budgets has not yet been assessed. For 20 plots of artificially established grassland mixtures differing in plant diversity, we determined N and P inputs by bulk and dry deposition and N and P losses by mowing (and subsequent removal of the biomass) and leaching from April 2003 to March 2004. Total deposition of N and P was 2.3 +/- 0.1 and 0.2 +/- 0.01 g m(-2) yr(-1), respectively. Mowing was the main N and P loss. The net N and P budgets were negative (-6.3 +/- 1.1 g N and -1.9 +/- 0.2 g P m(-2) yr(-1)). For N, this included a conservative estimate of atmospheric N(2) fixation. Nitrogen losses as N(2)O were expected to be small at our study site (<0.05 g m(-2) yr(-1)). Legumes increased the removal of N with the harvest and decreased leaching of NH(4)-N and dissolved organic nitrogen (DON) from the canopy. Reduced roughness of grass-containing mixtures decreased dry deposition of N and P. Total dissolved P and NO(3)-N leaching from the canopy increased in the presence of grasses attributable to the decreased N and P demand of grass-containing mixtures. Species richness did not have an effect on any of the studied fluxes. Our results demonstrate that the N and P fluxes in managed grassland are modified by the presence or absence of particular functional plant groups and are mainly driven by the management.


Asunto(s)
Agricultura/métodos , Nitrógeno/análisis , Fósforo/análisis , Poaceae/crecimiento & desarrollo , Biodiversidad , Biomasa , Fabaceae/crecimiento & desarrollo , Nitratos/análisis , Compuestos de Amonio Cuaternario/análisis , Lluvia , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA