Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 62(3): 323-324, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153530

RESUMEN

Epitranscriptomic marks are dynamically placed on mRNA by "writer" or "eraser" enzymes, while "readers" modulate their function accordingly. Lin et al. (2016) now report that the N6-methyladenosine:RNA methyltransferase METTL3 is both a writer and a reader, directly enhancing mRNA translation.


Asunto(s)
ARN Mensajero/genética , ARN/genética , Metiltransferasas/genética
2.
Cell Mol Life Sci ; 80(2): 54, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715759

RESUMEN

Neural stem cells reside in the subgranular zone, a specialized neurogenic niche of the hippocampus. Throughout adulthood, these cells give rise to neurons in the dentate gyrus, playing an important role in learning and memory. Given that these core cognitive processes are disrupted in numerous disease states, understanding the underlying mechanisms of neural stem cell proliferation in the subgranular zone is of direct practical interest. Here, we report that mature neurons, neural stem cells and neural precursor cells each secrete the neurovascular protein epidermal growth factor-like protein 7 (EGFL7) to shape this hippocampal niche. We further demonstrate that EGFL7 knock-out in a Nestin-CreERT2-based mouse model produces a pronounced upregulation of neurogenesis within the subgranular zone. RNA sequencing identified that the increased expression of the cytokine VEGF-D correlates significantly with the ablation of EGFL7. We substantiate this finding with intraventricular infusion of VEGF-D upregulating neurogenesis in vivo and further show that VEGF-D knock-out produces a downregulation of neurogenesis. Finally, behavioral studies in EGFL7 knock-out mice demonstrate greater maintenance of spatial memory and improved memory consolidation in the hippocampus by modulation of pattern separation. Taken together, our findings demonstrate that both EGFL7 and VEGF-D affect neurogenesis in the adult hippocampus, with the ablation of EGFL7 upregulating neurogenesis, increasing spatial learning and memory, and correlating with increased VEGF-D expression.


Asunto(s)
Células-Madre Neurales , Ratones , Animales , Células-Madre Neurales/metabolismo , Aprendizaje Espacial , Factor D de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/fisiología , Hipocampo/metabolismo , Neurogénesis/genética , Ratones Noqueados , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
Mol Cancer ; 22(1): 83, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173708

RESUMEN

BACKGROUND: RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS: Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS: In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION: The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.


Asunto(s)
Neoplasias Hepáticas , Metiltransferasas , Humanos , 5-Metilcitosina , Islas de CpG , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteómica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética
4.
BMC Biol ; 18(1): 40, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293435

RESUMEN

BACKGROUND: 5-Methylcytosine (m5C) is a prevalent base modification in tRNA and rRNA but it also occurs more broadly in the transcriptome, including in mRNA, where it serves incompletely understood molecular functions. In pursuit of potential links of m5C with mRNA translation, we performed polysome profiling of human HeLa cell lysates and subjected RNA from resultant fractions to efficient bisulfite conversion followed by RNA sequencing (bsRNA-seq). Bioinformatic filters for rigorous site calling were devised to reduce technical noise. RESULTS: We obtained ~ 1000 candidate m5C sites in the wider transcriptome, most of which were found in mRNA. Multiple novel sites were validated by amplicon-specific bsRNA-seq in independent samples of either human HeLa, LNCaP and PrEC cells. Furthermore, RNAi-mediated depletion of either the NSUN2 or TRDMT1 m5C:RNA methyltransferases showed a clear dependence on NSUN2 for the majority of tested sites in both mRNAs and noncoding RNAs. Candidate m5C sites in mRNAs are enriched in 5'UTRs and near start codons and are embedded in a local context reminiscent of the NSUN2-dependent m5C sites found in the variable loop of tRNA. Analysing mRNA sites across the polysome profile revealed that modification levels, at bulk and for many individual sites, were inversely correlated with ribosome association. CONCLUSIONS: Our findings emphasise the major role of NSUN2 in placing the m5C mark transcriptome-wide. We further present evidence that substantiates a functional interdependence of cytosine methylation level with mRNA translation. Additionally, we identify several compelling candidate sites for future mechanistic analysis.


Asunto(s)
5-Metilcitosina/química , Polirribosomas/química , Biosíntesis de Proteínas , ARN Mensajero/química , Células HeLa , Humanos
5.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235464

RESUMEN

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Asunto(s)
Terapia por Luz de Baja Intensidad , Neuroprotección/efectos de la radiación , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Degeneración Retiniana/terapia , Animales , Femenino , Rayos Infrarrojos/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Masculino , Ratones Endogámicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Regulación hacia Arriba/efectos de la radiación , alfa-Cristalinas/genética
6.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31428936

RESUMEN

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Epigénesis Genética , Glioma/metabolismo , Metiltransferasas/metabolismo , Proteínas Musculares/metabolismo , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Metilación de ADN , Humanos , Metiltransferasas/genética , Ratones Desnudos , Proteínas Musculares/genética , Trasplante de Neoplasias , ARN Ribosómico 28S
8.
PLoS Genet ; 11(1): e1004906, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25568943

RESUMEN

Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a ß-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.


Asunto(s)
Satélite del Virus del Mosaico del Pepino/genética , Cucumovirus/genética , Glucuronidasa/genética , Nicotiana/genética , Cucumovirus/patogenicidad , Metilación de ADN/genética , Silenciador del Gen , Genoma de Planta , Virus Helper/genética , Plantas Modificadas Genéticamente , ARN Interferente Pequeño , Análisis de Secuencia de ARN , Nicotiana/virología , Transgenes
9.
Biochim Biophys Acta ; 1859(1): 59-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541084

RESUMEN

The pervasive transcription of genomes into long noncoding RNAs has been amply demonstrated in recent years and garnered much attention. Similarly, emerging 'epitranscriptomics' research has shown that chemically modified nucleosides, thought to be largely the domain of tRNAs and other infrastructural RNAs, are far more widespread and can exert unexpected influence on RNA utilization. Both areas are characterized by the often-ephemeral nature of the subject matter in that few individual examples have been fully assessed for their molecular or cellular function, and effects might often be subtle and cumulative. Here we review available information at the intersection of these two exciting areas of biology, by focusing on four RNA modifications that have been mapped transcriptome-wide: 5-methylcytidine, N6-methyladenosine, pseudouridine as well as adenosine to inosine (A-to-I) editing, and their incidence and function in long noncoding RNAs. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Asunto(s)
Epigenómica , ARN Largo no Codificante/genética , Transcripción Genética , Transcriptoma/genética , Adenosina/genética , Animales , Citidina/análogos & derivados , Citidina/química , Genoma , Humanos , ARN Largo no Codificante/química , ARN de Transferencia/química , ARN de Transferencia/genética
10.
Mol Plant Microbe Interact ; 26(6): 658-67, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23405866

RESUMEN

Plant phenotypes resistant and susceptible to fungal pathogens are usually scored using qualitative, subjective methods that are based upon disease symptoms or by an estimation of the amount of visible fungal growth. Given that plant resistance genes often confer partial resistance to fungal pathogens, a simple, sensitive, nonsubjective quantitative method for measuring pathogen growth would be highly advantageous. This report describes an in planta quantitative assay for fungal biomass based upon detection of chitin using wheat germ agglutinin conjugated to a fluorophore. Using this assay, the growth of wheat rust pathogens on wheat was assayed and the additivity of several adult plant and seedling resistance genes to Puccinia striiformis, P. graminis, and P. triticina was assayed on both glasshouse- and field-grown material. The assay can discriminate between individual rust pustules on a leaf segment or, alternatively, compare fungal growth on field plots. The quantification of Erysiphe necator (powdery mildew) growth on Vitis vinifera (grapevine) is also demonstrated, with resistant and susceptible cultivars readily distinguished. Given that chitin is a major cell wall component of many plant fungal pathogens, this robust assay will enable simple and accurate measurement of biomass accumulation in many plant-fungus interactions.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Basidiomycota/crecimiento & desarrollo , Quitina/análisis , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Vitis/microbiología , Ascomicetos/patogenicidad , Basidiomycota/patogenicidad , Biomasa , Fluoresceína-5-Isotiocianato/análisis , Genotipo , Microscopía Fluorescente , Fenotipo , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Estándares de Referencia , Reproducibilidad de los Resultados , Plantones/inmunología , Plantones/microbiología , Sensibilidad y Especificidad , Factores de Tiempo , Triticum/inmunología , Aglutininas del Germen de Trigo/análisis
11.
Proc Natl Acad Sci U S A ; 107(28): 12664-9, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616037

RESUMEN

We describe a mechanosensitive (MS) channel that has mechanosensitive channel of miniconductance (MscM) activity, and displays unique properties with respect to gating. Mechanosensitive channels respond to membrane tension, are ubiquitous from bacteria to man, and exhibit a great diversity in structure and function. These channels protect Bacteria and Archaea against hypoosmotic shock and are critical determinants of shape in chloroplasts. Given the dominant roles played in bacteria by the mechanosensitive channel of small conductance (MscS) and the mechanosensitive channel of large conductance (MscL), the role of the multiple MS channel homologs observed in most organisms remains obscure. Here we demonstrate that a MscS homolog, YbdG, extends the range of hypoosmotic shock that Escherichia coli cells can survive, but its expression level is insufficient to protect against severe shocks. Overexpression of the YbdG protein provides complete protection. Transcription and translation of the ybdG gene are enhanced by osmotic stress consistent with a role for the protein in survival of hypoosmotic shock. Measurement of the conductance of the native channel by standard patch clamp methods was not possible. However, a fully functional YbdG mutant channel, V229A, exhibits a conductance in membrane patches consistent with MscM activity. We find that MscM activities arise from more than one gene product because ybdG deletion mutants still exhibit an occasional MscM-like conductance. We propose that ybdG encodes a low-abundance MscM-type MS channel, which in cells relieves low levels of membrane tension, obviating the need to activate the major MS channels, MscS and MscL.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Escherichia coli/genética , Escherichia coli/fisiología , Archaea/genética , Archaea/metabolismo , Eliminación de Secuencia
12.
Cancers (Basel) ; 15(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37046685

RESUMEN

Immune cells constitute a major part of the tumor microenvironment, thereby playing an important role in regulating tumor development. They interact with tumor cells, resulting in the suppression or promotion of glioma development. Therefore, in recent years, scientists have focused on immunotherapy that involves enhancing the immune response to fight the battle against cancer more effectively. While it has shown success against different cancer types, immunotherapy faces major roadblocks in glioma treatment. These involve the blood brain barrier, tumor heterogeneity and an immunosuppressive glioma microenvironment, among other factors. Additionally, the interaction of the peripheral immune system with the central nervous system provides another challenge for immunotherapeutic regimens. For modulating different immune cell populations to counter glioma cells, it is important to expand our knowledge about their role within the glioma microenvironment; therefore, herein, we review the different immune cell populations found in the glioma microenvironment and navigate through the various shortcomings of current immunotherapies for glioma. We conclude by providing an insight into ongoing pre-clinical and clinical trials for glioma therapies.

13.
Cells ; 12(19)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37830613

RESUMEN

The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Proteínas Proto-Oncogénicas c-cbl , Animales , Ratones , Diferenciación Celular , Receptores ErbB/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo
14.
Front Mol Neurosci ; 16: 1130249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937046

RESUMEN

Background: Age-related macular degeneration (AMD) is the leading cause of vision loss in the developed world and the detection of its onset and progression are based on retinal morphological assessments. MicroRNA (miRNA) have been explored extensively as biomarkers for a range of neurological diseases including AMD, however differences in experimental design and the complexity of human biology have resulted in little overlap between studies. Using preclinical animal models and clinical samples, this study employs a novel approach to determine a serum signature of AMD progression. Methods: Serum miRNAs were extracted from mice exposed to photo-oxidative damage (PD; 0, 1, 3 and 5 days), and clinical samples from patients diagnosed with reticular pseudodrusen or atrophic AMD. The expression of ~800 miRNAs was measured using OpenArray™, and differential abundance from controls was determined using the HTqPCR R package followed by pathway analysis with DAVID. MiRNA expression changes were compared against quantifiable retinal histological indicators. Finally, the overlap of miRNA changes observed in the mouse model and human patient samples was investigated. Results: Differential miRNA abundance was identified at all PD time-points and in clinical samples. Importantly, these were associated with inflammatory pathways and histological changes in the retina. Further, we were able to align findings in the mouse serum to those of clinical patients. Conclusion: In conclusion, serum miRNAs are a valid tool as diagnostics for the early detection of retinal degeneration, as they reflect key changes in retinal health. The combination of pre-clinical animal models and human patient samples led to the identification of a preliminary serum miRNA signature for AMD. This study is an important platform for the future development of a diagnostic serum miRNA panel for the early detection of retinal degeneration.

15.
Front Cell Dev Biol ; 11: 1112062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819097

RESUMEN

Interneurons are fundamental cells for maintaining the excitation-inhibition balance in the brain in health and disease. While interneurons have been shown to play a key role in the pathophysiology of autism spectrum disorder (ASD) in adult mice, little is known about how their maturation is altered in the developing striatum in ASD. Here, we aimed to track striatal developing interneurons and elucidate the molecular and physiological alterations in the Cntnap2 knockout mouse model. Using Stereo-seq and single-cell RNA sequencing data, we first characterized the pattern of expression of Cntnap2 in the adult brain and at embryonic stages in the medial ganglionic eminence (MGE), a transitory structure producing most cortical and striatal interneurons. We found that Cntnap2 is enriched in the striatum, compared to the cortex, particularly in the developing striatal cholinergic interneurons. We then revealed enhanced MGE-derived cell proliferation, followed by increased cell loss during the canonical window of developmental cell death in the Cntnap2 knockout mice. We uncovered specific cellular and molecular alterations in the developing Lhx6-expressing cholinergic interneurons of the striatum, which impacts interneuron firing properties during the first postnatal week. Overall, our work unveils some of the mechanisms underlying the shift in the developmental trajectory of striatal interneurons which greatly contribute to the ASD pathogenesis.

16.
Methods Mol Biol ; 2404: 375-392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694621

RESUMEN

Mapping the position and quantifying the level of 5-methylcytosine (m5C) as a modification in different types of cellular RNA is an important objective in the field of epitranscriptomics. Bisulfite conversion has long been the gold standard for the detection of m5C in DNA, but it can also be applied to RNA. Here, we detail methods for bisulfite treatment of RNA, locus-specific PCR amplification, and detection of candidate sites by sequencing on the Illumina MiSeq platform.


Asunto(s)
Análisis de Secuencia de ADN , 5-Metilcitosina , Secuenciación de Nucleótidos de Alto Rendimiento , Metilación , ARN/genética
17.
Cancers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681710

RESUMEN

Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation. GPCs were treated with 2.5 Gy of γ radiation in seven consecutive cellular passages to select for GPCs with increased colony-forming properties and intrinsic or radiation-induced resistance (rsGPCs). Quantitative proteomic analysis of the cellular signaling platforms of the detergent-resistant membranes (lipid rafts) in GPCs vs. rsGPCs revealed a downregulation of the MHC class I antigen-processing and -presentation machinery. Importantly, the radio-selected GPCs showed reduced susceptibility towards cytotoxic CD8+ T-cell-mediated killing. While previous studies suggested that high-dose irradiation results in enhanced antigen presentation, we demonstrated that clinically relevant sub-lethal fractionated irradiation results in reduced expression of components of the MHC class I antigen-processing and -presentation pathway leading to immune escape.

18.
Mol Vis ; 17: 876-84, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21527999

RESUMEN

PURPOSE: The present study was performed to investigate the early effects of blue light irradiation of photoreceptors in retinal explant cultures. METHODS: Murine retinal explant cultures were irradiated with visible blue light (405 nm) with an output power of 1 mW/cm2. Dihydroethidium was used to determine the production of reactive oxygen species. Morphological alterations of photoreceptor outer segments were determined by live imaging microscopy with mitochondrial dye JC-1. Transmission and scanning electron microscopy were used for ultrastructural evaluations. Cell death in the retina was assessed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assay method. RESULTS: Live retinal explants displayed an increase in reactive oxygen species production, as revealed by fluorescent dihydroethidium products in photoreceptor cells after 30 min of blue light exposure. After 3 h of exposure, blue light caused disorganization of the normally neatly stacked outer segments of living photoreceptors. Ultrastructural analysis revealed breaks in the cell membrane surrounding the outer segments, especially in the middle section. The outer segments appeared tortuous, and the lamellar structures had been disrupted. TUNEL-staining revealed that long-term blue light exposure induced photoreceptor cell death. CONCLUSIONS: In vitro blue light irradiation of retinal explants is a suitable model system for investigating early ultrastructural changes, as well as damage that leads to cell death in photoreceptor cells.


Asunto(s)
Luz/efectos adversos , Células Fotorreceptoras de Vertebrados , Retina , Animales , Bencimidazoles/análisis , Carbocianinas/análisis , Muerte Celular/efectos de la radiación , Etidio/análogos & derivados , Etidio/análisis , Femenino , Colorantes Fluorescentes/análisis , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Técnicas de Cultivo de Órganos/métodos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Células Fotorreceptoras de Vertebrados/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Retina/metabolismo , Retina/efectos de la radiación , Retina/ultraestructura
19.
Cancers (Basel) ; 13(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34298735

RESUMEN

Communication signals and signaling pathways are often studied in different physiological systems. However, it has become abundantly clear that the immune system is not self-regulated, but functions in close association with the nervous system. The neural-immune interface is complex; its balance determines cancer progression, as well as autoimmune disorders. Immunotherapy remains a promising approach in the context of glioblastoma multiforme (GBM). The primary obstacle to finding effective therapies is the potent immunosuppression induced by GBM. Anti-inflammatory cytokines, induction of regulatory T cells, and the expression of immune checkpoint molecules are the key mediators for immunosuppression in the tumor microenvironment. Immune checkpoint molecules are ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. In the past decade, they have been extensively studied in preclinical and clinical trials in diseases such as cancer or autoimmune diseases in which the immune system has failed to maintain homeostasis. In this review, we will discuss promising immune-modulatory targets that are in the focus of current clinical research in glioblastoma, but are also in the precarious position of potentially becoming starting points for the development of autoimmune diseases like multiple sclerosis.

20.
Mol Neurobiol ; 58(2): 835-854, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33037565

RESUMEN

Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL+ and IBA1+ positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1+ cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration.


Asunto(s)
Inflamación/genética , MicroARNs/metabolismo , Retina/fisiopatología , Degeneración Retiniana/genética , Degeneración Retiniana/fisiopatología , Animales , Núcleo Celular/metabolismo , Inflamación/complicaciones , Luz , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de la radiación , Retina/patología , Degeneración Retiniana/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA