Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2220882120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802418

RESUMEN

Pathogens such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), influenza, and rhinoviruses are transmitted by airborne aerosol respiratory particles that are exhaled by infectious subjects. We have previously reported that the emission of aerosol particles increases on average 132-fold from rest to maximal endurance exercise. The aims of this study are to first measure aerosol particle emission during an isokinetic resistance exercise at 80% of the maximal voluntary contraction until exhaustion, second to compare aerosol particle emission during a typical spinning class session versus a three-set resistance training session. Finally, we then used this data to calculate the risk of infection during endurance and resistance exercise sessions with different mitigation strategies. During a set of isokinetic resistance exercise, aerosol particle emission increased 10-fold from 5,400 ± 1,200 particles/min at rest to 59,000 ± 69,900 particles/min during a set of resistance exercise. We found that aerosol particle emission per minute is on average 4.9-times lower during a resistance training session than during a spinning class. Using this data, we determined that the simulated infection risk increase during an endurance exercise session was sixfold higher than during a resistance exercise session when assuming one infected participant in the class. Collectively, this data helps to select mitigation measures for indoor resistance and endurance exercise classes at times where the risk of aerosol-transmitted infectious disease with severe outcomes is high.


Asunto(s)
COVID-19 , Entrenamiento de Fuerza , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Aerosoles y Gotitas Respiratorias , Ejercicio Físico
2.
Proc Natl Acad Sci U S A ; 120(22): e2301145120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216504

RESUMEN

Airborne respiratory aerosol particle transmission of pathogens such as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), influenza, or rhinoviruses plays a major role in the spread of infectious diseases. The infection risk is increased during indoor exercise, as aerosol particle emission can increase by more than 100-fold from rest to maximal exercise. Earlier studies have investigated the effect of factors such as age, sex, and body mass index (BMI), but only at rest and without taking ventilation into account. Here, we report that during both rest and exercise, subjects aged 60 to 76 y emit on average more than twice as many aerosol particles per minute than subjects aged 20 to 39 y. In terms of volume, older subjects emit on average five times as much dry volume (i.e., the residue of dried aerosol particles) than younger subjects. There was no statistically significant effect of sex or BMI within the test group. Together, this suggests that aging of the lung and respiratory tract is associated with an increased generation of aerosol particles irrespective of ventilation. Our findings demonstrate that age and exercise increase aerosol particle emission. In contrast, sex or BMI only have minor effects.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias , Pulmón
3.
Sci Rep ; 14(1): 4644, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409397

RESUMEN

Airborne transmission of pathogens plays a major role in the spread of infectious diseases. Aerosol particle production from the lung is thought to occur in the peripheral airways. In the present study we investigated eighty lung-healthy subjects of two age groups (20-39, 60-76 years) at rest and during exercise whether lung function parameters indicative of peripheral airway function were correlated with individual differences in aerosol particle emission. Lung function comprised spirometry and impulse oscillometry during quiet breathing and an expiratory vital capacity manoeuvre, using resistance (R5) and reactance at 5 Hz (X5) as indicators potentially related to peripheral airway function. The association between emission at different ventilation rates relative to maximum ventilation and lung function was assessed by regression analysis. In multiple regression analyses including age group, only vital capacity manoeuvre R5 at 15% to 50% of end-expiratory vital capacity as well as quiet breathing X5 were independently linked to particle emission at 20% to 50% of maximum ventilation, in addition to age group. The fact that age as predictive factor was still significant, although to a lower degree, points towards further effects of age, potentially involving surface properties not accounted for by impulse oscillometry parameters.


Asunto(s)
Resistencia de las Vías Respiratorias , Pulmón , Humanos , Adulto Joven , Adulto , Oscilometría , Pruebas de Función Respiratoria , Espirometría , Volumen Espiratorio Forzado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA