RESUMEN
Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.
Asunto(s)
Enfermedades Transmisibles/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inflamación/inmunología , Enfermedad Aguda , Enfermedad Crónica , HumanosRESUMEN
Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
Asunto(s)
Hematopoyesis Clonal/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Secuenciación Completa del Genoma , Adulto , África/etnología , Anciano , Anciano de 80 o más Años , Población Negra/genética , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Mutación de Línea Germinal/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Fenotipo , Medicina de Precisión , Proteínas Proto-Oncogénicas/genética , Proteínas de Motivos Tripartitos/genética , Estados Unidos , alfa Carioferinas/genéticaRESUMEN
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Asunto(s)
Genómica , Fibrosis Pulmonar Idiopática , Mucina 5B , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/terapia , Mucina 5B/genética , Predisposición Genética a la Enfermedad/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/terapia , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.
Asunto(s)
Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/genética , Células Endoteliales , Enfermedades Pulmonares Intersticiales/genética , Factores de Riesgo , Telómero , Predisposición Genética a la Enfermedad/genética , Receptores del Ácido Lisofosfatídico/genéticaRESUMEN
Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.
Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Estudios de Cohortes , Incidencia , Disnea , Pulmón , Estudios RetrospectivosRESUMEN
Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had â¼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.
Asunto(s)
Estudio de Asociación del Genoma Completo , Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Factores de Riesgo , Pulmón , Mucina 5B/genética , Predisposición Genética a la EnfermedadRESUMEN
It has been shown that vertical transmission of the SARS-CoV-2 strain is relatively rare, and there is still limited information on the specific impact of maternal SARS-CoV-2 infection on vertical transmission. The current study focuses on a transcriptomics analysis aimed at examining differences in gene expression between placentas from mother-newborn pairs affected by COVID-19 and those from unaffected controls. Additionally, it investigates the in situ expression of molecules involved in placental inflammation. The Papa Giovanni XXIII Hospital in Bergamo, Italy, has recorded three instances of intrauterine transmission of SARS-CoV-2. The first two cases occurred early in the pandemic and involved pregnant women in their third trimester who were diagnosed with SARS-CoV-2. The third case involved an asymptomatic woman in her second trimester with a twin pregnancy, who unfortunately delivered two stillborn fetuses due to the premature rupture of membranes. Transcriptomic analysis revealed significant differences in gene expression between the placentae of COVID-19-affected mother/newborn pairs and two matched controls. The infected and control placentae were matched for gestational age. According to the Benjamani-Hochberg method, 305 genes met the criterion of an adjusted p-value of less than 0.05, and 219 genes met the criterion of less than 0.01. Up-regulated genes involved in cell signaling (e.g., CCL20, C3, MARCO) and immune response (e.g., LILRA3, CXCL10, CD48, CD86, IL1RN, IL-18R1) suggest their potential role in the inflammatory response to SARS-CoV-2. RNAscope® technology, coupled with image analysis, was utilized to quantify the surface area covered by SARS-CoV-2, ACE2, IL-1ß, IL-6, IL-8, IL-10, and TNF-α on both the maternal and fetal sides of the placenta. A non-statistically significant gradient for SARS-CoV-2 was observed, with a higher surface coverage on the fetal side (2.42 ± 3.71%) compared to the maternal side (0.74 ± 1.19%) of the placenta. Although not statistically significant, the surface area covered by ACE2 mRNA was higher on the maternal side (0.02 ± 0.04%) compared to the fetal side (0.01 ± 0.01%) of the placenta. IL-6 and IL-8 were more prevalent on the fetal side (0.03 ± 0.04% and 0.06 ± 0.08%, respectively) compared to the maternal side (0.02 ± 0.01% and 0.02 ± 0.02%, respectively). The mean surface areas of IL-1ß and IL-10 were found to be equal on both the fetal (0.04 ± 0.04% and 0.01 ± 0.01%, respectively) and maternal sides of the placenta (0.04 ± 0.05% and 0.01 ± 0.01%, respectively). The mean surface area of TNF-α was found to be equal on both the fetal and maternal sides of the placenta (0.02 ± 0.02% and 0.02 ± 0.02%, respectively). On the maternal side, ACE-2 and all examined interleukins, but not TNF-α, exhibited an inverse mRNA amount compared to SARS-CoV-2. On the fetal side, ACE-2, IL-6 and IL-8 were inversely correlated with SARS-CoV-2 (r = -0.3, r = -0.1 and r = -0.4, respectively), while IL-1ß and IL-10 showed positive correlations (r = 0.9, p = 0.005 and r = 0.5, respectively). TNF-α exhibited a positive correlation with SARS-CoV-2 on both maternal (r = 0.4) and fetal sides (r = 0.9) of the placenta. Further research is needed to evaluate the correlation between cell signaling and immune response genes in the placenta and the vertical transmission of SARS-CoV-2. Nonetheless, the current study extends our comprehension of the molecular and immunological factors involved in SARS-CoV-2 placental infection underlying maternal-fetal transmission.
Asunto(s)
COVID-19 , Transmisión Vertical de Enfermedad Infecciosa , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , COVID-19/inmunología , COVID-19/transmisión , COVID-19/virología , Citocinas/metabolismo , Citocinas/genética , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/inmunología , Inflamación/virología , Placenta/inmunología , Placenta/metabolismo , Placenta/virología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/inmunología , TranscriptomaRESUMEN
Populations identified to be severely affected by COVID-19, such as pregnant patients, require special consideration in vaccine counseling, access, and provider education. Maternal infection with COVID-19 poses a significant risk to the maternal-fetal dyad with known adverse placenta destruction [1-5]. Despite the widespread access and availability of vaccinations, vaccine hesitancy continues to persist and is highly prevalent in pregnant populations [6-9]. Addressing the multitude of social ecological factors surrounding vaccine hesitancy can aid in providing holistic counseling [10]. However, such factors are foremost shaped by maternal concern over possible fetal effects from vaccination. While changes in policy can help foster vaccine access and acceptance, increasing global provider education and incorporation of motivational interviewing skills are the first steps towards increasing maternal acceptance.
Asunto(s)
COVID-19 , Mujeres Embarazadas , Embarazo , Humanos , Femenino , Vacunas contra la COVID-19 , COVID-19/prevención & control , Placenta , Escolaridad , VacunaciónRESUMEN
The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
Asunto(s)
Fibrosis Pulmonar Idiopática , Mucina 5B , Ratones , Animales , Mucina 5B/genética , Mucina 5B/metabolismo , Factor 2B Eucariótico de Iniciación , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Estrés del Retículo Endoplásmico , BleomicinaRESUMEN
Idiopathic pulmonary fibrosis (IPF) is an incurable complex genetic disorder that is associated with sequence changes in 7 genes (MUC5B, TERT, TERC, RTEL1, PARN, SFTPC, and SFTPA2) and with variants in at least 11 novel loci. We have previously found that 1) a common gain-of-function promoter variant in MUC5B rs35705950 is the strongest risk factor (genetic and otherwise), accounting for 30-35% of the risk of developing IPF, a disease that was previously considered idiopathic; 2) the MUC5B promoter variant can potentially be used to identify individuals with preclinical pulmonary fibrosis and is predictive of radiologic progression of preclinical pulmonary fibrosis; and 3) MUC5B may be involved in the pathogenesis of pulmonary fibrosis with MUC5B message and protein expressed in bronchiolo-alveolar epithelia of IPF and the characteristic IPF honeycomb cysts. Based on these considerations, we hypothesize that excessive production of MUC5B either enhances injury due to reduced mucociliary clearance or impedes repair consequent to disruption of normal regenerative mechanisms in the distal lung. In aggregate, these novel considerations should have broad impact, resulting in specific etiologic targets, early detection of disease, and novel biologic pathways for use in the design of future intervention, prevention, and mechanistic studies of IPF.
Asunto(s)
Bronquiolos/fisiopatología , Fibrosis Pulmonar Idiopática/genética , Mucina 5B/genética , Depuración Mucociliar/genética , Alveolos Pulmonares/fisiopatología , Animales , Predisposición Genética a la Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Mucosa Respiratoria/fisiopatologíaRESUMEN
We report the autopsy pathology findings of a 21-week stillborn fetus with congenital mpox syndrome that occurred in the Democratic Republic of the Congo in 2008. The fetus acquired mpox from the mother after intrauterine transplacental monkeypox virus transmission. We confirmed monkeypox virus infection in the mother, fetus, and placenta by using a monkeypox virus-specific quantitative PCR. Subtyping of the virus was not performed, but the mother and fetus were almost certainly infected with the clade I variant that was endemic in the Democratic Republic of the Congo at the time. Risk for intrauterine infection appears to differ between virus clades, but clinicians should be aware of potential for intrauterine monkeypox virus transmission among pregnant persons during ongoing and future mpox outbreaks.
Asunto(s)
Mpox , Humanos , Femenino , Embarazo , República Democrática del Congo/epidemiología , Placenta , Monkeypox virus , Mortinato , Feto/patología , SíndromeRESUMEN
Aggregate tests of rare variants are often employed to identify associated regions compared to sequentially testing each individual variant. When an aggregate test is significant, it is of interest to identify which rare variants are "driving" the association. We recently developed the rare variant influential filtering tool (RIFT) to identify influential rare variants and showed RIFT had higher true positive rates compared to other published methods. Here we use importance measures from the standard random forest (RF) and variable importance weighted RF (vi-RF) to identify influential variants. For very rare variants (minor allele frequency [MAF] < 0.001), the vi-RF:Accuracy method had the highest median true positive rate (TPR = 0.24; interquartile range [IQR]: 0.13, 0.42) followed by the RF:Accuracy method (TPR = 0.16; IQR: 0.07, 0.33) and both were superior to RIFT (TPR = 0.05; IQR: 0.02, 0.15). Among uncommon variants (0.001 < MAF < 0.03), the RF methods had higher true positive rates than RIFT while observing comparable false positive rates. Finally, we applied the RF methods to a targeted resequencing study in idiopathic pulmonary fibrosis (IPF), in which the vi-RF approach identified eight and seven variants in TERT and FAM13A, respectively. In summary, the vi-RF provides an improved, objective approach to identifying influential variants following a significant aggregate test. We have expanded our previously developed R package RIFT to include the random forest methods.
Asunto(s)
Fibrosis Pulmonar Idiopática , Bosques Aleatorios , Humanos , Frecuencia de los Genes , Análisis de Secuencia de ADN , Proteínas Activadoras de GTPasaRESUMEN
BACKGROUND: Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS: We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS: We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION: We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Transcriptoma , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Perfilación de la Expresión Génica , Análisis por Conglomerados , BiomarcadoresRESUMEN
Perianal Crohn's disease affects 25%-35% of patients with Crohn's disease and has proven to be one of the most difficult complications of the disease to treat. Patients with perianal Crohn's disease have lower health-related quality of life scores typically related to pain and fecal incontinence. In addition, patients with perianal Crohn's disease have higher rates of hospitalizations, surgeries, and overall healthcare costs. A multidisciplinary approach is necessary for the successful management of Crohn's disease with perianal fistula. Medical management is required to treat the underlying immune dysregulation to heal the luminal inflammation and the inflammation within the fistula tracts. Current options for medical therapy include biologics, dual therapy with thiopurines, therapeutic drug monitoring, and a close follow-up. Surgical management is critical to drain abscesses before immunosuppressive therapy and place setons when appropriate. Once the patient's inflammatory burden is well managed, definitive surgical therapies including fistulotomies, advancement flaps, and ligation of intersphincteric fistula tract procedures can be considered. Most recently, the use of stem cell therapy in the treatment of perianal fistula has given new hope to the cure of perianal fistula in Crohn's disease. This review will outline the most current data in the medical and surgical management of perianal Crohn's disease.
Asunto(s)
Enfermedad de Crohn , Incontinencia Fecal , Fístula Rectal , Humanos , Enfermedad de Crohn/terapia , Enfermedad de Crohn/cirugía , Calidad de Vida , Fístula Rectal/terapia , Fístula Rectal/cirugía , Incontinencia Fecal/complicaciones , Absceso/etiología , Resultado del TratamientoRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.
Asunto(s)
Factor 2 Eucariótico de Iniciación , Fibrosis Pulmonar Idiopática , Humanos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Transcriptoma , FibrosisRESUMEN
BACKGROUND: The prevalence of atopic diseases has increased with atopic dermatitis (AD) as the earliest manifestation. We assessed if molecular risk factors in atopic mothers influence their infants' susceptibility to an atopic disease. METHODS: Pregnant women and their infants with (n = 174, high-risk) or without (n = 126, low-risk) parental atopy were enrolled in a prospective birth cohort. Global differentially methylated regions (DMRs) were determined in atopic (n = 92) and non-atopic (n = 82) mothers. Principal component analysis was used to predict atopy risk in children dependent on maternal atopy. Genome-wide transcriptomic analyses were performed in paired atopic (n = 20) and non-atopic (n = 15) mothers and cord blood. Integrative genomic analyses were conducted to define methylation-gene expression relationships. RESULTS: Atopic dermatitis was more prevalent in high-risk compared to low-risk children by age 2. Differential methylation analyses identified 165 DMRs distinguishing atopic from non-atopic mothers. Inclusion of DMRs in addition to maternal atopy significantly increased the odds ratio to develop AD in children from 2.56 to 4.26. In atopic compared to non-atopic mothers, 139 differentially expressed genes (DEGs) were identified significantly enriched of genes within the interferon signaling pathway. Expression quantitative trait methylation analyses dependent on maternal atopy identified 29 DEGs controlled by 136 trans-acting methylation marks, some located near transcription factors. Differential expression for the same nine genes, including MX1 and IFI6 within the interferon pathway, was identified in atopic and non-atopic mothers and high-risk and low-risk children. CONCLUSION: These data suggest that in utero epigenetic and transcriptomic mechanisms predominantly involving the interferon pathway may impact and predict the development of infant atopy.
Asunto(s)
Dermatitis Atópica , Niño , Lactante , Humanos , Femenino , Embarazo , Preescolar , Dermatitis Atópica/epidemiología , Dermatitis Atópica/genética , Estudios Prospectivos , Factores de Riesgo , Familia , TranscriptomaRESUMEN
Stillbirth is a recognized complication of COVID-19 in pregnant women that has recently been demonstrated to be caused by SARS-CoV-2 infection of the placenta. Multiple global studies have found that the placental pathology present in cases of stillbirth consists of a combination of concurrent destructive findings that include increased fibrin deposition that typically reaches the level of massive perivillous fibrin deposition, chronic histiocytic intervillositis, and trophoblast necrosis. These 3 pathologic lesions, collectively termed SARS-CoV-2 placentitis, can cause severe and diffuse placental parenchymal destruction that can affect >75% of the placenta, effectively rendering it incapable of performing its function of oxygenating the fetus and leading to stillbirth and neonatal death via malperfusion and placental insufficiency. Placental infection and destruction can occur in the absence of demonstrable fetal infection. Development of SARS-CoV-2 placentitis is a complex process that may have both an infectious and immunologic basis. An important observation is that in all reported cases of SARS-CoV-2 placentitis causing stillbirth and neonatal death, the mothers were unvaccinated. SARS-CoV-2 placentitis is likely the result of an episode of SARS-CoV-2 viremia at some time during the pregnancy. This article discusses clinical and pathologic aspects of the relationship between maternal COVID-19 vaccination, SARS-CoV-2 placentitis, and perinatal death.
Asunto(s)
COVID-19 , Corioamnionitis , Muerte Perinatal , Complicaciones Infecciosas del Embarazo , Embarazo , Recién Nacido , Femenino , Humanos , Mortinato/epidemiología , SARS-CoV-2 , Placenta , Vacunas contra la COVID-19 , Madres , Fibrina , Transmisión Vertical de Enfermedad InfecciosaRESUMEN
BACKGROUND: Dose escalation of self-injectable biologic therapy for inflammatory bowel diseases may be required to counteract loss of response and/or low drug levels. Payors often require completion of a prior authorization (PA), which is a complex approval pathway before providing coverage. If the initial PA request is denied, clinic staff must complete a time and resource-intensive process to obtain medication approval. AIMS: This study measured time from decision to dose escalate to insurance approval and evaluated impact of approval time on disease activity. METHODS: This was a single-center retrospective analysis of adult patients with IBD prescribed an escalated dose of biologic therapy at an academic center with an integrated specialty pharmacy team from January to December 2018. Outcomes included time to insurance approval and the association between approval time and follow-up C-reactive protein (CRP) and Short Inflammatory Bowel Disease Questionnaire (SIBDQ) scores. Associations were tested using linear regression analyses. RESULTS: 220 patients were included, median age 39, 53% female, and 96% white. Overall median time from decision to dose escalate to insurance approval was 7 days [interquartile range (IQR) 1, 14]. Approval time was delayed when an appeal was required [median of 29 days (IQR 17, 43)]. Patients with a longer time to insurance approval were less likely to have CRP improvement (p = 0.019). Time to insurance approval did not significantly impact follow-up SIBDQ scores. CONCLUSION: Patients who had a longer time to insurance approval were less likely to have improvement in CRP, highlighting the negative clinical impact of a complex dose escalation process.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Seguro , Adulto , Humanos , Femenino , Masculino , Estudios Retrospectivos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Análisis de Regresión , Terapia BiológicaRESUMEN
Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.