Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(3): 731-747.e16, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257032

RESUMEN

N6-methyladenosine (m6A) is the most abundant modification on mRNA and is implicated in critical roles in development, physiology, and disease. A major limitation has been the inability to quantify m6A stoichiometry and the lack of antibody-independent methodologies for interrogating m6A. Here, we develop MAZTER-seq for systematic quantitative profiling of m6A at single-nucleotide resolution at 16%-25% of expressed sites, building on differential cleavage by an RNase. MAZTER-seq permits validation and de novo discovery of m6A sites, calibration of the performance of antibody-based approaches, and quantitative tracking of m6A dynamics in yeast gametogenesis and mammalian differentiation. We discover that m6A stoichiometry is "hard coded" in cis via a simple and predictable code, accounting for 33%-46% of the variability in methylation levels and allowing accurate prediction of m6A loss and acquisition events across evolution. MAZTER-seq allows quantitative investigation of m6A regulation in subcellular fractions, diverse cell types, and disease states.


Asunto(s)
Adenosina/análogos & derivados , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Adenosina/análisis , Adenosina/inmunología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Anticuerpos/inmunología , Cromatografía Líquida de Alta Presión , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias , Endorribonucleasas/metabolismo , Humanos , Meiosis , Metilación , Ratones , Motivos de Nucleótidos , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem
2.
Mol Cell ; 84(8): 1601-1610.e2, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640895

RESUMEN

Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.


Asunto(s)
Citidina , ARN , Humanos , ARN Mensajero/genética , Acetilación , Mutación
3.
Nat Immunol ; 20(2): 173-182, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559377

RESUMEN

N6-methyladenosine (m6A) is the most common mRNA modification. Recent studies have revealed that depletion of m6A machinery leads to alterations in the propagation of diverse viruses. These effects were proposed to be mediated through dysregulated methylation of viral RNA. Here we show that following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A 'writer' METTL3 or 'reader' YTHDF2 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, the gene encoding the main cytokine that drives the type I interferon response, was m6A modified and was stabilized following repression of METTL3 or YTHDF2. Furthermore, we show that m6A-mediated regulation of interferon genes was conserved in mice. Together, our findings uncover the role m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.


Asunto(s)
Adenosina/análogos & derivados , Interacciones Huésped-Patógeno/genética , Inmunidad Innata/genética , Interferón Tipo I/genética , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Línea Celular Tumoral , Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Interferón Tipo I/inmunología , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/inmunología , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Muromegalovirus/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/metabolismo
4.
Nat Immunol ; 20(2): 243, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30635652

RESUMEN

In the version of this article initially published, the penultimate sentence of the abstract included a typographical error ('cxgenes'). The correct word is 'genes'. The error has been corrected in the HTML and PDF version of the article.

5.
Mol Cell ; 83(2): 237-251.e7, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36599352

RESUMEN

N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.


Asunto(s)
Empalme del ARN , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Exones/genética
6.
Cell ; 159(1): 148-162, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25219674

RESUMEN

Pseudouridine is the most abundant RNA modification, yet except for a few well-studied cases, little is known about the modified positions and their function(s). Here, we develop Ψ-seq for transcriptome-wide quantitative mapping of pseudouridine. We validate Ψ-seq with spike-ins and de novo identification of previously reported positions and discover hundreds of unique sites in human and yeast mRNAs and snoRNAs. Perturbing pseudouridine synthases (PUS) uncovers which pseudouridine synthase modifies each site and their target sequence features. mRNA pseudouridinylation depends on both site-specific and snoRNA-guided pseudouridine synthases. Upon heat shock in yeast, Pus7p-mediated pseudouridylation is induced at >200 sites, and PUS7 deletion decreases the levels of otherwise pseudouridylated mRNA, suggesting a role in enhancing transcript stability. rRNA pseudouridine stoichiometries are conserved but reduced in cells from dyskeratosis congenita patients, where the PUS DKC1 is mutated. Our work identifies an enhanced, transcriptome-wide scope for pseudouridine and methods to dissect its underlying mechanisms and function.


Asunto(s)
Seudouridina/análisis , ARN Mensajero/química , ARN no Traducido/química , Animales , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Perfilación de la Expresión Génica , Humanos , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Seudouridina/metabolismo , ARN/química , ARN/genética , ARN Ribosómico/química , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Telomerasa/química , Telomerasa/genética
7.
Mol Cell ; 81(8): 1595-1597, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33861948

RESUMEN

In this issue of Molecular Cell, Behrens et al. (2021) address a long-standing challenge in the field of tRNA regulation and develop an approach for measuring tRNA abundance at unprecedented accuracy.


Asunto(s)
Eucariontes , ARN de Transferencia , ARN de Transferencia/genética
8.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905683

RESUMEN

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina/metabolismo , Inosina/metabolismo , Edición de ARN , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Células A549 , Adenosina/genética , Adenosina Desaminasa/metabolismo , Animales , Emparejamiento Base , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Ratones , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
Cell ; 155(6): 1409-21, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24269006

RESUMEN

N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.


Asunto(s)
Meiosis , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces/citología , Saccharomyces/metabolismo , Adenosina/análogos & derivados , Adenosina/análisis , Adenosina/metabolismo , Nucléolo Celular/metabolismo , Genoma Fúngico , Metilación , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ARNt Metiltransferasas/metabolismo
10.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32943573

RESUMEN

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Asunto(s)
Compensación de Dosificación (Genética) , Gametogénesis/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Células Madre Embrionarias , Fertilidad/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados
11.
Trends Genet ; 40(4): 313-325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350740

RESUMEN

Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , ARN/metabolismo
12.
Nat Rev Genet ; 22(2): 119-131, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188361

RESUMEN

Following its transcription, RNA can be modified by >170 chemically distinct types of modifications - the epitranscriptome. In recent years, there have been substantial efforts to uncover and characterize the modifications present on mRNA, motivated by the potential of such modifications to regulate mRNA fate and by discoveries and advances in our understanding of N 6-methyladenosine (m6A). Here, we review our knowledge regarding the detection, distribution, abundance, biogenesis, functions and possible mechanisms of action of six of these modifications - pseudouridine (Ψ), 5-methylcytidine (m5C), N 1-methyladenosine (m1A), N 4-acetylcytidine (ac4C), ribose methylations (Nm) and N 7-methylguanosine (m7G). We discuss the technical and analytical aspects that have led to inconsistent conclusions and controversies regarding the abundance and distribution of some of these modifications. We further highlight shared commonalities and important ways in which these modifications differ with respect to m6A, based on which we speculate on their origin and their ability to acquire functions over evolutionary timescales.


Asunto(s)
Adenosina/análogos & derivados , Procesamiento Postranscripcional del ARN , Transcriptoma , Adenosina/metabolismo , Animales , Cromatografía Liquida , Evolución Molecular , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Espectrometría de Masas
13.
EMBO J ; 41(21): e109895, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971838

RESUMEN

Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.


Asunto(s)
Planarias , Animales , Planarias/fisiología , Diferenciación Celular/genética , Células Madre/metabolismo , Homeostasis/genética , Cromatina/metabolismo
14.
Nature ; 583(7817): 638-643, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555463

RESUMEN

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Asunto(s)
Acetilación , Citidina/análogos & derivados , Células Eucariotas/metabolismo , Evolución Molecular , ARN/química , ARN/metabolismo , Archaea/química , Archaea/citología , Archaea/genética , Archaea/crecimiento & desarrollo , Secuencia Conservada , Microscopía por Crioelectrón , Citidina/metabolismo , Células Eucariotas/citología , Células HeLa , Humanos , Modelos Moleculares , Acetiltransferasas N-Terminal/metabolismo , ARN de Archaea/química , ARN de Archaea/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Temperatura
15.
Nucleic Acids Res ; 52(8): e42, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38512053

RESUMEN

We present txtools, an R package that enables the processing, analysis, and visualization of RNA-seq data at the nucleotide-level resolution, seamlessly integrating alignments to the genome with transcriptomic representation. txtools' main inputs are BAM files and a transcriptome annotation, and the main output is a table, capturing mismatches, deletions, and the number of reads beginning and ending at each nucleotide in the transcriptomic space. txtools further facilitates downstream visualization and analyses. We showcase, using examples from the epitranscriptomic field, how a few calls to txtools functions can yield insightful and ready-to-publish results. txtools is of broad utility also in the context of structural mapping and RNA:protein interaction mapping. By providing a simple and intuitive framework, we believe that txtools will be a useful and convenient tool and pave the path for future discovery. txtools is available for installation from its GitHub repository at https://github.com/AngelCampos/txtools.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Programas Informáticos , Humanos , Conformación de Ácido Nucleico , Mapeo de Interacción de Proteínas/métodos , ARN/química , ARN/genética , ARN/metabolismo , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma
16.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34480159

RESUMEN

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Asunto(s)
Adenosina/análogos & derivados , Estabilidad del ARN/genética , Análisis de Secuencia de ARN/métodos , Adenosina/análisis , Adenosina/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Expresión Génica , Semivida , Meiosis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Levaduras/genética
17.
RNA ; 28(12): 1582-1596, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36127124

RESUMEN

N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.


Asunto(s)
Citidina , ARN Guía de Kinetoplastida , Humanos , Acetilación , ARN Guía de Kinetoplastida/metabolismo , Citidina/genética , Citidina/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Nucleótidos/metabolismo
18.
Nucleic Acids Res ; 50(9): 4900-4916, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35536311

RESUMEN

RNA can be extensively modified post-transcriptionally with >170 covalent modifications, expanding its functional and structural repertoire. Pseudouridine (Ψ), the most abundant modified nucleoside in rRNA and tRNA, has recently been found within mRNA molecules. It remains unclear whether pseudouridylation of mRNA can be snoRNA-guided, bearing important implications for understanding the physiological target spectrum of snoRNAs and for their potential therapeutic exploitation in genetic diseases. Here, using a massively parallel reporter based strategy we simultaneously interrogate Ψ levels across hundreds of synthetic constructs with predesigned complementarity against endogenous snoRNAs. Our results demonstrate that snoRNA-mediated pseudouridylation can occur on mRNA targets. However, this is typically achieved at relatively low efficiencies, and is constrained by mRNA localization, snoRNA expression levels and the length of the snoRNA:mRNA complementarity stretches. We exploited these insights for the design of snoRNAs targeting pseudouridylation at premature termination codons, which was previously shown to suppress translational termination. However, in this and follow-up experiments in human cells we observe no evidence for significant levels of readthrough of pseudouridylated stop codons. Our study enhances our understanding of the scope, 'design rules', constraints and consequences of snoRNA-mediated pseudouridylation.


Asunto(s)
Seudouridina , Procesamiento Postranscripcional del ARN , ARN Mensajero , ARN Nucleolar Pequeño , Humanos , Biosíntesis de Proteínas , Seudouridina/genética , Seudouridina/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo
19.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35648437

RESUMEN

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Asunto(s)
Eucariontes , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Acetilación , Animales , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
20.
BMC Biol ; 21(1): 246, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936138

RESUMEN

BACKGROUND: The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS: In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS: This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.


Asunto(s)
Proteínas de Unión al ARN , Ribonucleoproteínas , Animales , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Drosophila/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA