Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35303419

RESUMEN

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Sialiltransferasas/genética , Animales , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Moco/metabolismo , Sialiltransferasas/metabolismo , Simbiosis
2.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172257

RESUMEN

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Asunto(s)
Ceramidas , Proteínas de Unión al GTP , Animales , Humanos , Longevidad/genética , Células Endoteliales/metabolismo , Mamíferos/metabolismo
3.
Cell ; 184(21): 5338-5356.e21, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34624222

RESUMEN

The tumor microenvironment (TME) influences cancer progression and therapy response. Therefore, understanding what regulates the TME immune compartment is vital. Here we show that microbiota signals program mononuclear phagocytes in the TME toward immunostimulatory monocytes and dendritic cells (DCs). Single-cell RNA sequencing revealed that absence of microbiota skews the TME toward pro-tumorigenic macrophages. Mechanistically, we show that microbiota-derived stimulator of interferon genes (STING) agonists induce type I interferon (IFN-I) production by intratumoral monocytes to regulate macrophage polarization and natural killer (NK) cell-DC crosstalk. Microbiota modulation with a high-fiber diet triggered the intratumoral IFN-I-NK cell-DC axis and improved the efficacy of immune checkpoint blockade (ICB). We validated our findings in individuals with melanoma treated with ICB and showed that the predicted intratumoral IFN-I and immune compositional differences between responder and non-responder individuals can be transferred by fecal microbiota transplantation. Our study uncovers a mechanistic link between the microbiota and the innate TME that can be harnessed to improve cancer therapies.


Asunto(s)
Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Microbiota , Monocitos/metabolismo , Microambiente Tumoral , Akkermansia/efectos de los fármacos , Akkermansia/fisiología , Animales , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Fibras de la Dieta/farmacología , Fosfatos de Dinucleósidos/administración & dosificación , Fosfatos de Dinucleósidos/farmacología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunomodulación/efectos de los fármacos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Melanoma/inmunología , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Monocitos/efectos de los fármacos , Fagocitos/efectos de los fármacos , Fagocitos/metabolismo , Transcripción Genética/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
4.
Cell ; 172(1-2): 106-120.e21, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249356

RESUMEN

Cell fate transitions involve rapid gene expression changes and global chromatin remodeling, yet the underlying regulatory pathways remain incompletely understood. Here, we identified the RNA-processing factor Nudt21 as a novel regulator of cell fate change using transcription-factor-induced reprogramming as a screening assay. Suppression of Nudt21 enhanced the generation of induced pluripotent stem cells, facilitated transdifferentiation into trophoblast stem cells, and impaired differentiation of myeloid precursors and embryonic stem cells, suggesting a broader role for Nudt21 in cell fate change. We show that Nudt21 directs differential polyadenylation of over 1,500 transcripts in cells acquiring pluripotency, although only a fraction changed protein levels. Remarkably, these proteins were strongly enriched for chromatin regulators, and their suppression neutralized the effect of Nudt21 during reprogramming. Collectively, our data uncover Nudt21 as a novel post-transcriptional regulator of cell fate and establish a direct, previously unappreciated link between alternative polyadenylation and chromatin signaling.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poliadenilación , Transducción de Señal , Animales , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones
7.
Cell ; 151(7): 1617-32, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260147

RESUMEN

Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming.


Asunto(s)
Reprogramación Celular , Técnicas Citológicas/métodos , Células Madre Pluripotentes Inducidas/citología , Animales , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(44): e2416722121, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39436665

RESUMEN

T cell receptor (TCR) engagement causes a global cellular response that entrains signaling pathways, cell cycle regulation, and cell death. The molecular regulation of mRNA translation in these processes is poorly understood. Using a whole-genome CRISPR screen for regulators of CD95 (FAS/APO-1)-mediated T cell death, we identified AMBRA1, a protein previously studied for its roles in autophagy, E3 ubiquitin ligase activity, and cyclin regulation. T cells lacking AMBRA1 resisted FAS-mediated cell death by down-regulating FAS expression at the translational level. We show that AMBRA1 is a vital regulator of ribosome protein biosynthesis and ribosome loading on select mRNAs, whereby it plays a key role in balancing TCR signaling with cell cycle regulation pathways. We also found that AMBRA1 itself is translationally controlled by TCR stimulation via the CD28-PI3K-mTORC1-EIF4F pathway. Together, these findings shed light on the molecular control of translation after T cell activation and implicate AMBRA1 as a translational regulator governing TCR signaling, cell cycle progression, and T cell death.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Biosíntesis de Proteínas , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Linfocitos T , Linfocitos T/inmunología , Linfocitos T/metabolismo , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Receptor fas/metabolismo , Receptor fas/genética , Animales , Regulación de la Expresión Génica , Ratones , Antígenos CD28/metabolismo , Antígenos CD28/genética , Fosfatidilinositol 3-Quinasas/metabolismo
9.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949522

RESUMEN

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Asunto(s)
Carboxiliasas , Lupus Eritematoso Sistémico , Macrófagos , Ratones Noqueados , Succinatos , Animales , Lupus Eritematoso Sistémico/inmunología , Ratones , Humanos , Femenino , Macrófagos/inmunología , Succinatos/farmacología , Enfermedades Cardiovasculares/inmunología , Biomarcadores , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Adulto , Masculino , Modelos Animales de Enfermedad , Persona de Mediana Edad , Citocinas/metabolismo , Receptor Toll-Like 7/metabolismo , Hidroliasas
10.
Nature ; 585(7824): 273-276, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32516797

RESUMEN

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Macaca mulatta/virología , Neumonía Viral/prevención & control , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Animales , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Líquido del Lavado Bronquioalveolar/virología , COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Análisis Mutacional de ADN , Progresión de la Enfermedad , Farmacorresistencia Viral , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Pulmón/virología , Masculino , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Neumonía Viral/virología , SARS-CoV-2 , Prevención Secundaria , Factores de Tiempo , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Esparcimiento de Virus/efectos de los fármacos
11.
PLoS Genet ; 19(1): e1010565, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656833

RESUMEN

Fatal familial insomnia (FFI) is a rare neurodegenerative disease caused by a dominantly inherited single amino acid substitution (D178N) within the prion protein (PrP). No in vitro human brain tissue model for this disease has previously been available. Consequently, how this mutation exerts its damaging effect on brain cells is still unknown. Using CRISPR-Cas9 engineered induced pluripotent stem cells, we made D178N cerebral organoids and compared these with isotype control organoids. We found that, in the absence of other hallmarks of FFI, the D178N organoids exhibited astrogliosis with cellular oxidative stress. Abnormal post-translational processing of PrP was evident but no tissue deposition or propagation of mis-folded PrP isoforms were observed. Neuronal electrophysiological function was compromised and levels of neurotransmitters, particularly acetylcholine and GABA, altered. Underlying these dysfunctions were changes in cellular energy homeostasis, with substantially increased glycolytic and Krebs cycle intermediates, and greater mitochondrial activity. This increased energy demand in D178N organoids was associated with increased mitophagy and depletion of lipid droplets, in turn resulting in shifts of cellular lipid composition. Using a double mutation (178NN) we could confirm that most changes were caused by the presence of the mutation rather than interaction with PrP molecules lacking the mutation. Our data strongly suggests that shifting biosynthetic intermediates and oxidative stress, caused by an imbalance of energy supply and demand, results in astrogliosis with compromised neuronal activity in FFI organoids. They further support that many of the disease associated changes are due to a corruption of PrP function and do not require propagation of PrP mis-folding.


Asunto(s)
Insomnio Familiar Fatal , Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Humanos , Insomnio Familiar Fatal/genética , Insomnio Familiar Fatal/metabolismo , Gliosis/genética , Gliosis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , Mutación , Oxidación-Reducción , Organoides/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo
12.
J Biol Chem ; 299(11): 105319, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37802314

RESUMEN

Mis-folding of the prion protein (PrP) is known to cause neurodegenerative disease; however, the native function of this protein remains poorly defined. PrP has been linked with many cellular functions, including cellular proliferation and senescence. It is also known to influence epidermal growth factor receptor (EGFR) signaling, a pathway that is itself linked with both cell growth and senescence. Adult neural stem cells (NSCs) persist at low levels in the brain throughout life and retain the ability to proliferate and differentiate into new neural lineage cells. KO of PrP has previously been shown to reduce NSC proliferative capacity. We used PrP KO and WT NSCs from adult mouse brain to examine the influence of PrP on cellular senescence, EGFR signaling, and the downstream cellular processes. PrP KO NSCs showed decreased cell proliferation and increased senescence in in vitro cultures. Expression of EGFR was decreased in PrP KO NSCs compared with WT NSCs and additional supplementation of EGF was sufficient to reduce senescence. RNA-seq analysis confirmed that significant changes were occurring at the mRNA level within the EGFR signaling pathway and these were associated with reduced expression of mitochondrial components and correspondingly reduced mitochondrial function. Metabolomic analysis of cellular energy pathways showed that blockages were occurring at critical sites for production of energy and biomass, including catabolism of pyruvate. We conclude that, in the absence of PrP, NSC growth pathways are downregulated as a consequence of insufficient energy and growth intermediates.


Asunto(s)
Células-Madre Neurales , Enfermedades Neurodegenerativas , Priones , Animales , Ratones , Proliferación Celular , Senescencia Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Priones/metabolismo , Transducción de Señal/genética , Ratones Endogámicos C57BL
13.
PLoS Pathog ; 18(3): e1010385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35255112

RESUMEN

We have identified GpsA, a predicted glycerol-3-phosphate dehydrogenase, as a virulence factor in the Lyme disease spirochete Borrelia (Borreliella) burgdorferi: GpsA is essential for murine infection and crucial for persistence of the spirochete in the tick. B. burgdorferi has a limited biosynthetic and metabolic capacity; the linchpin connecting central carbohydrate and lipid metabolism is at the interconversion of glycerol-3-phosphate and dihydroxyacetone phosphate, catalyzed by GpsA and another glycerol-3-phosphate dehydrogenase, GlpD. Using a broad metabolomics approach, we found that GpsA serves as a dominant regulator of NADH and glycerol-3-phosphate levels in vitro, metabolic intermediates that reflect the cellular redox potential and serve as a precursor for lipid and lipoprotein biosynthesis, respectively. Additionally, GpsA was required for survival under nutrient stress, regulated overall reductase activity and controlled B. burgdorferi morphology in vitro. Furthermore, during in vitro nutrient stress, both glycerol and N-acetylglucosamine were bactericidal to B. burgdorferi in a GlpD-dependent manner. This study is also the first to identify a suppressor mutation in B. burgdorferi: a glpD deletion restored the wild-type phenotype to the pleiotropic gpsA mutant, including murine infectivity by needle inoculation at high doses, survival under nutrient stress, morphological changes and the metabolic imbalance of NADH and glycerol-3-phosphate. These results illustrate how basic metabolic functions that are dispensable for in vitro growth can be essential for in vivo infectivity of B. burgdorferi and may serve as attractive therapeutic targets.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Enfermedad de Lyme , Garrapatas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Ratones , NAD/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo
14.
J Immunol ; 209(7): 1323-1334, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36002235

RESUMEN

Obesity is considered an important comorbidity for a range of noninfectious and infectious disease states including those that originate in the lung, yet the mechanisms that contribute to this susceptibility are not well defined. In this study, we used the diet-induced obesity (DIO) mouse model and two models of acute pulmonary infection, Francisella tularensis subspecies tularensis strain SchuS4 and SARS-CoV-2, to uncover the contribution of obesity in bacterial and viral disease. Whereas DIO mice were more resistant to infection with SchuS4, DIO animals were more susceptible to SARS-CoV-2 infection compared with regular weight mice. In both models, neither survival nor morbidity correlated with differences in pathogen load, overall cellularity, or influx of inflammatory cells in target organs of DIO and regular weight animals. Increased susceptibility was also not associated with exacerbated production of cytokines and chemokines in either model. Rather, we observed pathogen-specific dysregulation of the host lipidome that was associated with vulnerability to infection. Inhibition of specific pathways required for generation of lipid mediators reversed resistance to both bacterial and viral infection. Taken together, our data demonstrate disparity among obese individuals for control of lethal bacterial and viral infection and suggest that dysregulation of the host lipidome contributes to increased susceptibility to viral infection in the obese host.


Asunto(s)
COVID-19 , Francisella tularensis , Tularemia , Virosis , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Lípidos , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , SARS-CoV-2 , Virosis/metabolismo
15.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203799

RESUMEN

Ion-radiation-induced DNA double-strand breaks can lead to severe cellular damage ranging from mutations up to direct cell death. The interplay between the chromatin surrounding the damage and the proteins responsible for damage recognition and repair determines the efficiency and outcome of DNA repair. The chromatin is organized in three major functional compartments throughout the interphase: the chromatin territories, the interchromatin compartment, and the perichromatin lying in between. In this study, we perform correlation analysis using super-resolution STED images of chromatin; splicing factor SC35, as an interchromatin marker; and the DNA repair factors 53BP1, Rad51, and γH2AX in carbon-ion-irradiated human HeLa cells. Chromatin and interchromatin overlap only in protruding chromatin branches, which is the same for the correlation between chromatin and 53BP1. In contrast, between interchromatin and 53BP1, a gap of (270 ± 40) nm is visible. Rad51 shows overlap with decondensed euchromatic regions located at the borders of condensed heterochromatin with further correlation with γH2AX. We conclude that the DNA damage is repaired in decondensed DNA loops in the perichromatin, located in the periphery of the DNA-dense chromatin compartments containing the heterochromatin. Proteins like γH2AX and 53BP1 serve as supporters of the chromatin structure.


Asunto(s)
Heterocromatina , Microscopía , Humanos , Células HeLa , Cromatina , ADN
16.
Mol Microbiol ; 118(4): 443-456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36054485

RESUMEN

The Lyme disease agent, Borrelia burgdorferi, harbors a significantly reduced genome and relies on the scavenging of critical nutrients from its tick and mammalian hosts for survival. Riboflavin salvage has been shown to be important for B. burgdorferi infection of mice, yet the contributions of riboflavin to B. burgdorferi metabolism and survival in the tick remain unknown. Using a targeted mass spectrometry approach, we confirmed the importance of bb0318, the putative ATPase component of an ABC-type riboflavin transporter, for riboflavin salvage and the production of FMN and FAD. This analysis further revealed that Δbb0318 B. burgdorferi displayed increased levels of glycerol 3-phosphate compared to the wild-type. The glycerol 3-phosphate dehydrogenase activity of GlpD was found to be FAD-dependent and the transcription and translation of glpD were significantly decreased in Δbb0318 B. burgdorferi. Finally, gene bb0318 was found to be important for maximal spirochete burden in unfed larvae and essential for survival in feeding ticks. Together, these data demonstrate the importance of riboflavin salvage for B. burgdorferi carbon metabolism and survival in ticks.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ratones , Adenosina Trifosfatasas , Borrelia burgdorferi/genética , Carbono , Mononucleótido de Flavina , Flavina-Adenina Dinucleótido , Mamíferos , Oxidorreductasas , Riboflavina
17.
J Immunol ; 206(2): 329-334, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33277388

RESUMEN

The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.


Asunto(s)
COVID-19 , Eicosanoides , Lipidómica , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , Araquidonato 12-Lipooxigenasa/inmunología , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/inmunología , Araquidonato 5-Lipooxigenasa/metabolismo , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , Ciclooxigenasa 2/inmunología , Ciclooxigenasa 2/metabolismo , Eicosanoides/sangre , Eicosanoides/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
18.
Cell Immunol ; 373: 104485, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149415

RESUMEN

The metabolite itaconate plays a critical role in modulating inflammatory responses among macrophages infected with intracellular pathogens. However, the ability of itaconate to influence developing T cells responses is poorly understood. To determine if itaconate contributes to the quality of T cell mediated immunity against intracellular infection, we used Francisella tularensis as a model of vaccine induced immunity. Following vaccination with F. tularensis live vaccine strain, itaconate deficient mice (ACOD KO) had a prolonged primary infection but were more resistant to secondary infection with virulent F. tularensis relative to wild type controls. Improved resistance to secondary challenge was associated with both increased numbers and effector function of CD4+ and CD8+ T cells in ACOD KO mice. However, additional data suggest that improved T cell responses was not T cell intrinsic. These data underscore the consequences of metabolic perturbations within antigen presenting cells on the development of vaccine-elicited immune responses.


Asunto(s)
Francisella tularensis , Tularemia , Animales , Vacunas Bacterianas , Linfocitos T CD8-positivos , Ratones , Ratones Endogámicos C57BL , Succinatos , Vacunación , Vacunas Atenuadas
19.
Ecol Lett ; 24(1): 149-161, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33073900

RESUMEN

Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.


Asunto(s)
Polinización , Simbiosis , Animales , Ecosistema , Plantas
20.
J Cell Sci ; 132(19)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31492757

RESUMEN

Nucleoli have attracted interest for their role as cellular stress sensors and as potential targets for cancer treatment. The effect of DNA double-strand breaks (DSBs) in nucleoli on rRNA transcription and nucleolar organisation appears to depend on the agent used to introduce DSBs, DSB frequency and the presence (or not) of DSBs outside the nucleoli. To address the controversy, we targeted nucleoli with carbon ions at the ion microbeam SNAKE. Localized ion irradiation with 1-100 carbon ions per point (about 0.3-30 Gy per nucleus) did not lead to overall reduced ribonucleotide incorporation in the targeted nucleolus or other nucleoli of the same cell. However, both 5-ethynyluridine incorporation and Parp1 protein levels were locally decreased at the damaged nucleolar chromatin regions marked by γH2AX, suggesting localized inhibition of rRNA transcription. This locally restricted transcriptional inhibition was not accompanied by nucleolar segregation, a structural reorganisation observed after inhibition of rRNA transcription by treatment with actinomycin D or UV irradiation. The presented data indicate that even multiple complex DSBs do not lead to a pan-nucleolar response if they affect only a subnucleolar region.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , ADN Ribosómico/genética , Humanos , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA