Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38903081

RESUMEN

Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that inhibit PKR by interacting with the same binding surface as eIF2α. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3 from vaccinia virus. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

2.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38076952

RESUMEN

The interfaces between host and viral proteins can be dynamic spaces in which genetic variants are continually pursued, giving rise to evolutionary arms races. One such scenario is found between the mammalian innate immunity protein PKR (protein kinase R) and the poxvirus antagonist K3. Once activated, PKR phosphorylates the natural substrate eIF2α, which halts protein synthesis within the cell and prevents viral replication. K3 acts as a pseudosubstrate antagonist against PKR by directly antagonizing this halt in protein synthesis, enabling poxviruses to replicate in the cell. Exploring the impact of genetic variants in both PKR and K3 is necessary not only to highlight residues of evolutionary constraint and opportunity but also to elucidate the mechanism by which human PKR is able to subvert a rapidly evolving viral antagonist. To systematically explore this dynamic interface, we have generated a combinatorial library of PKR and K3 missense variants to be co-expressed and characterized in a high-throughput yeast selection assay. This assay allows us to characterize hundreds of thousands of unique PKR-K3 genetic combinations in a single pooled experiment. Our results highlight specific missense variants available to PKR that subvert the K3 antagonist. We find that improved PKR variants are readily available at sites under positive selection, with limited opportunity at sites interfacing with K3 and eIF2α. Additionally, we find many variants that improve and disable K3 antagonism, suggesting a pliable interface. We reason that this approach can be leveraged to explore the evolutionary plasticity of many other host-virus interfaces.

3.
Front Pharmacol ; 11: 615287, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33716728

RESUMEN

During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA