Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 19(3): 895-903, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35113575

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults. The disease is characterized by the accumulation of tumoral B cells resulting from a defect of apoptosis. We have in vitro and in vivo preclinically validated a tumor-penetrating peptide (named TT1) coupled to an interfering peptide (IP) that dissociates the interaction between the serine/threonine protein phosphatase 2A (PP2A) from its physiological inhibitor, the oncoprotein SET. This TT1-IP peptide has an antitumoral effect on CLL, as shown by the increased survival of mice bearing xenograft models of CLL, compared to control mice. The peptide did not show toxicity, as indicated by the mouse body weight and the biochemical parameters, such as renal and hepatic enzymes. In addition, the peptide-induced apoptosis in vitro of primary tumoral B cells isolated from CLL patients but not of those isolated from healthy patients. Finally, the peptide had approximately 5 h half-life in human serum and showed pharmacokinetic parameters compatible with clinical development as a therapeutic peptide against CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Apoptosis , Linfocitos B/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/farmacología , Proteína Fosfatasa 2/uso terapéutico
2.
Mol Pharm ; 17(7): 2518-2531, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32421341

RESUMEN

M2-like tumor-associated macrophages (M2 TAMs) play important roles in the resistance of tumors to immunotherapies. Selective depletion or reprogramming of M2 TAMs may sensitize the nonresponsive tumors for immune-mediated eradication. However, precision delivery of payloads to M2 TAMs, while sparing healthy tissues, has remained an unresolved challenge. Here, we studied the application of a short linear peptide (CSPGAK, "mUNO") for the delivery of molecular and nanoscale cargoes in M2 TAMs in vitro and the relevance of the peptide for in vivo targeting of early-stage primary breast tumors and metastatic lung foci. First, we performed in silico modeling and found that mUNO interacts with mouse CD206 via a binding site between lectin domains CTLD1 and CTLD2, the same site previously demonstrated to be involved in mUNO binding to human CD206. Second, we showed that cultured M2 macrophages take up fluorescein-labeled (FAM) polymersomes conjugated with mUNO using the sulfhydryl group of its N-terminal cysteine. Pulse/chase studies of FAM-mUNO in M2 macrophages suggested that the peptide avoided lysosomal entrapment and escaped from early endosomes. Third, our in vivo studies with FAM-mUNO demonstrated that intraperitoneal administration results in better pharmacokinetics and higher blood bioavailability than can be achieved with intravenous administration. Intraperitoneal FAM-mUNO, but not FAM-control, showed a robust accumulation in M2-skewed macrophages in mouse models of early primary breast tumor and lung metastasis. This targeting was specific, as no uptake was observed in nonmalignant control organs, including the liver, or other cell types in the tumor, including M1 macrophages. Collectively, our studies support the application of the CD206-binding mUNO peptide for delivery of molecular and nanoscale cargoes to M2 macrophages and manifest the relevance of this mode of targeting primary and metastatic breast tumors.


Asunto(s)
Inmunoterapia/métodos , Lectinas Tipo C/química , Neoplasias Pulmonares/diagnóstico , Metástasis Linfática/diagnóstico , Lectinas de Unión a Manosa/química , Péptidos/química , Receptores de Superficie Celular/química , Neoplasias de la Mama Triple Negativas/diagnóstico , Macrófagos Asociados a Tumores/inmunología , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular Tumoral , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Femenino , Fluorescencia , Humanos , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/inmunología , Lisosomas/metabolismo , Maleimidas/química , Receptor de Manosa , Lectinas de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Péptidos/administración & dosificación , Péptidos/metabolismo , Péptidos/farmacocinética , Poliésteres/química , Polietilenglicoles/química , Polímeros/administración & dosificación , Polímeros/química , Polímeros/farmacología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/patología , Macrófagos Asociados a Tumores/metabolismo
3.
Molecules ; 25(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069856

RESUMEN

To penetrate solid tumors, low molecular weight (Mw < 10 KDa) compounds have an edge over antibodies: their higher penetration because of their small size. Because of the dense stroma and high interstitial fluid pressure of solid tumors, the penetration of higher Mw compounds is unfavored and being small thus becomes an advantage. This review covers a wide range of peptidic ligands-linear, cyclic, macrocyclic and cyclotidic peptides-to target tumors: We describe the main tools to identify peptides experimentally, such as phage display, and the possible chemical modifications to enhance the properties of the identified peptides. We also review in silico identification of peptides and the most salient non-peptidic ligands in clinical stages. We later focus the attention on the current validated ligands available to target different tumor compartments: blood vessels, extracelullar matrix, and tumor associated macrophages. The clinical advances and failures of these ligands and their therapeutic conjugates will be discussed. We aim to present the reader with the state-of-the-art in targeting tumors, by using low Mw molecules, and the tools to identify new ligands.


Asunto(s)
Péptidos/química , Animales , Técnicas de Visualización de Superficie Celular , Matriz Extracelular/química , Humanos , Macrófagos/metabolismo , Neoplasias/metabolismo
4.
J Nanobiotechnology ; 17(1): 120, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31812165

RESUMEN

BACKGROUND: Tamoxifen (Tam) is the most frequent treatment for estrogen receptor (ER) positive breast cancer. We recently showed that fibronectin (FN) leads to Tam resistance and selection of breast cancer stem cells. With the aim of developing a nanoformulation that would simultaneously tackle ER and FN/ß1 integrin interactions, we designed polyethylene glycol-polycaprolactone polymersomes polymersomes (PS) that carry Tam and are functionalized with the tumor-penetrating iRGD peptide (iRGD-PS-Tam). RESULTS: Polyethylene glycol-polycaprolactone PS were assembled and loaded with Tam using the hydration film method. The loading of encapsulated Tam, measured by UPLC, was 2.4 ± 0.5 mol Tam/mol polymer. Physicochemical characterization of the PS demonstrated that iRGD functionalization had no effect on morphology, and a minimal effect on the PS size and polydispersity (176 nm and Pdi 0.37 for iRGD-TAM-PS and 171 nm and Pdi 0.36 for TAM-PS). iRGD-PS-Tam were taken up by ER+ breast carcinoma cells in 2D-culture and exhibited increased penetration of 3D-spheroids. Treatment with iRGD-PS-Tam inhibited proliferation and sensitized cells cultured on FN to Tam. Mechanistically, treatment with iRGD-PS-Tam resulted in inhibition ER transcriptional activity as evaluated by a luciferase reporter assay. iRGD-PS-Tam reduced the number of cells with self-renewing capacity, a characteristic of breast cancer stem cells. In vivo, systemic iRGD-PS-Tam showed selective accumulation at the tumor site. CONCLUSIONS: Our study suggests iRGD-guided delivery of PS-Tam as a potential novel therapeutic strategy for the management of breast tumors that express high levels of FN. Future studies in pre-clinical in vivo models are warranted.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Oligopéptidos/química , Receptores de Estrógenos/metabolismo , Tamoxifeno/administración & dosificación , Animales , Antineoplásicos Hormonales/farmacocinética , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Autorrenovación de las Células/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Ratones Desnudos , Poliésteres/química , Polietilenglicoles/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacología , Activación Transcripcional/efectos de los fármacos
5.
Tumour Biol ; 39(5): 1010428317701628, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28468593

RESUMEN

Peritoneal carcinomatosis results from dissemination of solid tumors in the peritoneal cavity, and is a common site of metastasis in patients with carcinomas of gastrointestinal or gynecological origin. Peritoneal carcinomatosis treatment is challenging as poorly vascularized, disseminated peritoneal micro-tumors are shielded from systemic anticancer drugs and drive tumor regrowth. Here, we describe the identification and validation of a tumor homing peptide CKRDLSRRC (IP3), which upon intraperitoneal administration delivers payloads to peritoneal metastases. IP3 peptide was identified by in vivo phage display on a mouse model of peritoneal carcinomatosis of gastric origin (MKN-45P), using high-throughput sequencing of the peptide-encoding region of phage genome as a readout. The IP3 peptide contains a hyaluronan-binding motif, and fluorescein-labeled IP3 peptide bound to immobilized hyaluronan in vitro. After intraperitoneal administration in mice bearing peritoneal metastases of gastric and colon origin, IP3 peptide homed robustly to macrophage-rich regions in peritoneal tumors, including poorly vascularized micro-tumors. Finally, we show that IP3 functionalization conferred silver nanoparticles the ability to home to peritoneal tumors of gastric and colonic origin, suggesting that it could facilitate targeted delivery of nanoscale payloads to peritoneal tumors. Collectively, our study suggests that the IP3 peptide has potential applications for targeting drugs, nanoparticles, and imaging agents to peritoneal tumors.


Asunto(s)
Carcinoma/tratamiento farmacológico , Receptores de Hialuranos/administración & dosificación , Péptidos/administración & dosificación , Neoplasias Peritoneales/tratamiento farmacológico , Animales , Bacteriófagos/genética , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Humanos , Receptores de Hialuranos/genética , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Metástasis de la Neoplasia , Péptidos/genética , Cavidad Peritoneal/patología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología
6.
Anal Chem ; 86(24): 12180-4, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25420228

RESUMEN

High potential purified Trametes trogii laccase has been deposited in mono- and multilayer thin films on gold surfaces by layer-by-layer electrostatic adsorption self-assembly. The osmium bipyridil redox relay sites on polycation poly(allylamine) backbone efficiently work as a molecular "wire" in oxygen cathodes for biofuel cells. X-ray photoelectron spectroscopy of Cu 2p3/2 and Os 4f signals provided chemical information on the enzyme and redox mediator surface concentrations after different adsorption steps. The electrical charge involved in oxidation-reduction cycles of the osmium sites, the ellipsometric enzyme film thickness, and the mass uptake from quartz crystal microbalance experiments, correlate with the XPS surface concentration, which provides unique evidence on the chemical identity of the composition in the topmost layers. XPS is shown to be an important analytical tool to investigate stratified copper and osmium distribution in LbL thin films relevant to biosensors and biofuel cells.


Asunto(s)
Electrodos , Enzimas Inmovilizadas/química , Lacasa/química , Espectroscopía de Fotoelectrones/métodos , Oxidación-Reducción , Trametes/enzimología
7.
Sci Rep ; 14(1): 17513, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080306

RESUMEN

Cancer treatment with vascular disrupting agents (VDAs) causes rapid and extensive necrosis in solid tumors. However, these agents fall short in eliminating all malignant cells, ultimately leading to tumor regrowth. Here, we investigated whether the molecular changes in the tumor microenvironment induced by VDA treatment sensitize the tumors for secondary nanotherapy enhanced by clinical-stage tumor penetrating peptide iRGD. Treatment of peritoneal carcinomatosis (PC) and breast cancer mice with VDA combretastatin A-4 phosphate (CA4P) resulted in upregulation of the iRGD receptors αv-integrins and NRP-1, particularly in the peripheral tumor tissue. In PC mice treated with CA4P, coadministration of iRGD resulted in an approximately threefold increase in tumor accumulation and a more homogenous distribution of intraperitoneally administered nanoparticles. Notably, treatment with a combination of CA4P, iRGD, and polymersomes loaded with a novel anthracycline Utorubicin (UTO-PS) resulted in a significant decrease in the overall tumor burden in PC-bearing mice, while avoiding overt toxicities. Our results indicate that VDA-treated tumors can be targeted therapeutically using iRGD-potentiated nanotherapy and warrant further studies on the sequential targeting of VDA-induced molecular signatures.


Asunto(s)
Nanopartículas , Microambiente Tumoral , Animales , Microambiente Tumoral/efectos de los fármacos , Ratones , Femenino , Nanopartículas/química , Bibencilos/farmacología , Bibencilos/química , Línea Celular Tumoral , Humanos , Estilbenos/farmacología , Estilbenos/administración & dosificación , Oligopéptidos/química , Oligopéptidos/farmacología , Neuropilina-1/metabolismo , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación
8.
bioRxiv ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39345514

RESUMEN

Disease-specific changes in tumors and other diseased tissues are an important target of research because they provide clues on the pathophysiology of the disease as well as uncovering potentially useful markers for diagnosis and treatment. Here, we report a new cyclic peptide, CESPLLSEC (CES), that specifically accumulated (homed) in intracranial U87MG and the WT-GBM model of glioblastoma from intravenous (IV) injection, associating with the vasculature. Affinity chromatography of U87MG tumor extracts on insolubilized CES peptide identified Synaptosomal Associated Protein 25 (SNAP25) as a candidate target molecule (receptor) for CES. Several results supported the identification of SNAP25 as the CES receptor. IV-injected FAM-CES colocalized with SNAP25 in the tumors, and direct binding studies showed specific CES peptide binding to recombinant human SNAP25. A CES peptide-drug conjugate designed for photodynamic therapy showed selective cytotoxicity to SNAP25+ glioblastoma cell lines. Specific accumulation of systemically injected anti-SNAP25 antibody in U87MG glioblastoma, and labeling of intact U87MG cells with anti-SNAP in flow cytometry showed that SNAP25 is available from the circulation but not in normal tissues and that it is present at the cell surface. Using an array of ECM proteins and surface plasmon resonance revealed that SNAP25 binds moderately to collagen V and strongly to collagen VI. Modeling studies suggested that CES and collagen VI compete for the same binding site on SNAP25. Our results introduce CES as a valuable targeting peptide for drug delivery, and its receptor SNAP25 as a possible molecular marker of interest for glioblastoma.

9.
ACS Appl Mater Interfaces ; 14(51): 56613-56622, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36521233

RESUMEN

Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Ratones , Humanos , Animales , Femenino , Paclitaxel/química , Liposomas/química , Distribución Tisular , Caspasa 3 , Polietilenglicoles/química , Lípidos , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/química
10.
Cancer Res Commun ; 2(6): 533-551, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36923553

RESUMEN

Although many studies have explored the depletion of tumor-associated macrophages (TAM) as a therapeutic strategy for solid tumors, currently available compounds suffer from poor efficacy and dose-limiting side effects. Here, we developed a novel TAM-depleting agent ("OximUNO") that specifically targets CD206+ TAMs and demonstrated efficacy in a triple-negative breast cancer (TNBC) mouse model. OximUNO comprises a star-shaped polyglutamate (St-PGA) decorated with the CD206-targeting peptide mUNO that carries the chemotherapeutic drug doxorubicin (DOX). In the TNBC model, a fluorescently labeled mUNO-decorated St-PGA homed to CD206+ TAMs within primary lesions and metastases. OximUNO exhibited no acute liver or kidney toxicity in vivo. Treatment with OximUNO reduced the progression of primary tumor lesions and pulmonary metastases, significantly diminished the number of CD206+ TAMs and increased the CD8/FOXP3 expression ratio (indicating immunomodulation). Our findings suggest the potential benefit of OximUNO as a TAM-depleting agent for TNBC treatment. Importantly, our studies also represent a novel design of a peptide-targeted St-PGA as a targeted therapeutic nanoconjugate. Significance: A peptide-targeted nanoformulation of DOX exclusively eliminates mannose receptor+ TAMs in breast cancer models, generating response without off-target effects (a drawback of many TAM-depleting agents under clinical study).


Asunto(s)
Receptor de Manosa , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Ácido Poliglutámico/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Macrófagos Asociados a Tumores , Macrófagos , Doxorrubicina/farmacología , Procesos Neoplásicos , Péptidos/farmacología
11.
Front Oncol ; 11: 675664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041037

RESUMEN

In Oral Squamous Cell Carcinomas (OSCC), as in other solid tumors, stromal cells strongly support the spread and growth of the tumor. Macrophages in tumors (tumor-associated macrophages or "TAMs"), can swing between a pro-inflammatory and anti-tumorigenic (M1-like TAMs) state or an anti-inflammatory and pro-tumorigenic (M2-like TAMs) profile depending on the tumor microenvironment cues. Numerous clinical and preclinical studies have demonstrated the importance of macrophages in the prognosis of patients with different types of cancer. Here, our aim was to review the role of M2-like TAMs in the prognosis of patients with OSCC and provide a state of the art on strategies for depleting or reprogramming M2-like TAMs as a possible therapeutic solution for OSCC. The Clinical studies reviewed showed that higher density of CD163+ M2-like TAMs associated with worse survival and that CD206+ M2-TAMs are involved in OSCC progression through epidermal growth factor (EGF) secretion, underlining the important role of CD206 as a marker of OSCC progression and as a therapeutic target. Here, we provide the reader with the current tools, in preclinical and clinical stage, for depleting M2-like TAMs, re-educating them towards M1-like TAMs, and exploiting TAMs as drug delivery vectors.

12.
Pharmaceutics ; 13(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34575441

RESUMEN

Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.

13.
Acta Biomater ; 133: 231-243, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011297

RESUMEN

Nanomedicines represent innovative and promising alternative technologies to improve the therapeutic effects of different drugs for cancer ablation. Targeting M2-like tumor-associated macrophages (TAMs) has emerged as a favorable therapeutic approach to fight against cancer through the modulation of the tumor microenvironment. However, the immunomodulatory molecules used for this purpose present side effects upon systemic administration, which limits their clinical translation. Here, the biocompatible lignin polymer is used to prepare lignin nanoparticles (LNPs) that carry a dual agonist of the toll-like receptors TLR7/8 (resiquimod, R848). These LNPs are targeted to the CD206-positive M2-like TAMs using the "mUNO" peptide, in order to revert their pro-tumor phenotype into anti-tumor M1-like macrophages in the tumor microenvironment of an aggressive triple-negative in vivo model of breast cancer. Overall, we show that targeting the resiquimod (R848)-loaded LNPs to the M2-like macrophages, using very low doses of R848, induces a profound shift in the immune cells in the tumor microenvironment towards an anti-tumor immune state, by increasing the representation of M1-like macrophages, cytotoxic T cells, and activated dendritic cells. This effect consequently enhances the anticancer effect of the vinblastine (Vin) when co-administered with R848-loaded LNPs. STATEMENT OF SIGNIFICANCE: Lignin-based nanoparticles (LNPs) were successfully developed to target a potent TLR7/8 agonist (R848) of the tumor microenvironment (TME). This was achieved by targeting the mannose receptor (CD206) on the tumor supportive (M2-like) macrophages with the "mUNO" peptide, to reprogram them into an anti-tumor (M1-like) phenotype for enhanced chemotherapy. LNPs modified the biodistribution of the R848, and enhanced its accumulation and efficacy in shifting the immunological profile of the cells in the TME, which was not achieved by systemic administration of free R848. Moreover, a reduction in the tumor volumes was observed at lower equivalent doses of R848 compared with other studies. Therefore, the co-administration of R848@LNPs is a promising chemotherapeutic application in aggressive tumors, such as the triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Femenino , Humanos , Imidazoles , Lignina , Péptidos , Fenotipo , Distribución Tisular , Microambiente Tumoral , Macrófagos Asociados a Tumores
14.
J Am Chem Soc ; 132(32): 11132-40, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20698679

RESUMEN

High potential purified Trametes trogii laccase has been studied as a biocatalyst for oxygen cathodes composed of layer-by-layer self-assembled thin films by sequential immersion of mercaptopropane sulfonate-modified Au electrode surfaces in solutions containing laccase and osmium-complex bound to poly(allylamine), (PAH-Os). The polycation backbone carries the Os redox relay, and the polyanion is the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. Enzyme thin films were characterized by quartz crystal microbalance, ellipsometry, cyclic voltammetry, and oxygen reduction electrocatalysis under variable oxygen partial pressures with a rotating disk electrode. New kinetic evidence relevant to biofuel cells is presented on the detection of traces of H(2)O(2), intermediate in the O(2) reduction, with scanning electrochemical microscopy (SECM). Furthermore the inhibitory effect of peroxide on the biocatalytic current resulted in abnormal current dependence on the O(2) partial pressure and peak shape with hysteresis in the polarization curves under stagnant conditions, which is offset upon stirring with the RDE. The new kinetic evidence reported in the present work is very relevant for the operation of biofuel cells under stagnant conditions of O(2) mass transport.


Asunto(s)
Fuentes de Energía Bioeléctrica , Peróxido de Hidrógeno/química , Lacasa/metabolismo , Osmio/química , Oxígeno/química , Polímeros/química , Biocatálisis , Difusión , Electrodos , Cinética , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Presión , Rotación , Trametes/enzimología
15.
J Phys Chem B ; 123(9): 1973-1982, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30768279

RESUMEN

We recently identified a tumor-homing peptide (mUNO, sequence: "CSPGAK") that specifically interacts with mouse CD206 to target CD206/MRC1-expressing tumor-associated macrophages in mice. Here, we report studies on the binding of mUNO to human recombinant CD206 (hCD206) and on modeling the mUNO/hCD206 interaction by computational analysis. Fluorescence anisotropy analysis demonstrated that fluorophore-labeled mUNO interacts with hCD206. Microsecond time-scale molecular dynamics simulations and docking predictions showed that mUNO binds to a newly identified epitope between C-type lectin domains 1 and 2. The physical mechanisms that contribute to the docking interactions of mUNO include electrostatic interactions, aromatic interactions, and hydrogen bonds. We also demonstrate the selectivity of FAM-mUNO for CD206+-cultured human macrophages. The peptide mUNO appears to be the first ligand capable of interacting with this epitope of hCD206, for which no ligands have been reported. Our study has implications for targeting human M2-like tumor-associated macrophages, a subpopulation of immune cells with a major protumoral role.


Asunto(s)
Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Péptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Polarización de Fluorescencia , Humanos , Lectinas Tipo C/química , Ligandos , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/química , Unión Proteica , Receptores de Superficie Celular/química
16.
Nat Commun ; 9(1): 1070, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523838

RESUMEN

The original version of the Supplementary Information associated with this Article inadvertently omitted Supplementary Table 1. The HTML has now been updated to include a corrected version of the Supplementary Information.

17.
Biomaterials ; 166: 52-63, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29544111

RESUMEN

Cationic liposome-nucleic acid (CL-NA) complexes, which form spontaneously, are a highly modular gene delivery system. These complexes can be sterically stabilized via PEGylation [PEG: poly (ethylene glycol)] into nanoparticles (NPs) and targeted to specific tissues and cell types via the conjugation of an affinity ligand. However, there are currently no guidelines on how to effectively navigate the large space of compositional parameters that modulate the specific and nonspecific binding interactions of peptide-targeted NPs with cells. Such guidelines are desirable to accelerate the optimization of formulations with novel peptides. Using PEG-lipids functionalized with a library of prototypical tumor-homing peptides, we varied the peptide density and other parameters (binding motif, peptide charge, CL/DNA charge ratio) to study their effect on the binding and uptake of the corresponding NPs. We used flow cytometry to quantitatively assess binding as well as internalization of NPs by cultured cancer cells. Surprisingly, full peptide coverage resulted in less binding and internalization than intermediate coverage, with the optimum coverage varying between cell lines. In, addition, our data revealed that great care must be taken to prevent nonspecific electrostatic interactions from interfering with the desired specific binding and internalization. Importantly, such considerations must take into account the charge of the peptide ligand as well as the membrane charge density and the CL/DNA charge ratio. To test our guidelines, we evaluated the in vivo tumor selectivity of selected NP formulations in a mouse model of peritoneally disseminated human gastric cancer. Intraperitoneally administered peptide-tagged CL-DNA NPs showed tumor binding, minimal accumulation in healthy control tissues, and preferential penetration of smaller tumor nodules, a highly clinically relevant target known to drive recurrence of the peritoneal cancer.


Asunto(s)
ADN , Técnicas de Transferencia de Gen , Liposomas , Nanopartículas , Péptidos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Cationes , ADN/química , Terapia Genética/métodos , Humanos , Lípidos/química , Liposomas/química , Nanopartículas/química , Péptidos/química
18.
Oncotarget ; 9(27): 18682-18697, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721153

RESUMEN

Triple negative breast cancer (TNBC) is the deadliest form of breast cancer and its successful treatment critically depends on early diagnosis and therapy. The multi-compartment protein p32 is overexpressed and present at cell surfaces in a variety of tumors, including TNBC, specifically in the malignant cells and endothelial cells, and in macrophages localized in hypoxic areas of the tumor. Herein we used polyethylene glycol-polycaprolactone polymersomes that were affinity targeted with the p32-binding tumor penetrating peptide LinTT1 (AKRGARSTA) for imaging of TNBC lesions. A tyrosine residue was added to the peptide to allow for 124I labeling and PET imaging. In a TNBC model in mice, systemic LinTT1-targeted polymersomes accumulated in early tumor lesions more than twice as efficiently as untargeted polymersomes with up to 20% ID/cc at 24 h after administration. The PET-imaging was very sensitive, allowing detection of tumors as small as ∼20 mm3. Confocal imaging of tumor tissue sections revealed a high degree of vascular exit and stromal penetration of LinTT1-targeted polymersomes and co-localization with tumor-associated macrophages. Our studies show that systemic LinTT1-targeted polymersomes can be potentially used for precision-guided tumor imaging and treatment of TNBC.

19.
Nat Commun ; 8(1): 1403, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123083

RESUMEN

Cerebrovascular changes occur in Alzheimer's disease (AD). Using in vivo phage display, we searched for molecular markers of the neurovascular unit, including endothelial cells and astrocytes, in mouse models of AD. We identified a cyclic peptide, CDAGRKQKC (DAG), that accumulates in the hippocampus of hAPP-J20 mice at different ages. Intravenously injected DAG peptide homes to neurovascular unit endothelial cells and to reactive astrocytes in mouse models of AD. We identified connective tissue growth factor (CTGF), a matricellular protein that is highly expressed in the brain of individuals with AD and in mouse models, as the target of the DAG peptide. We also showed that exogenously delivered DAG homes to the brain in mouse models of glioblastoma, traumatic brain injury, and Parkinson's disease. DAG may potentially be used as a tool to enhance delivery of therapeutics and imaging agents to sites of vascular changes and astrogliosis in diseases associated with neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos Cíclicos/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Biblioteca de Péptidos , Péptidos Cíclicos/química , Unión Proteica
20.
Sci Rep ; 7(1): 14655, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116108

RESUMEN

Tumor-associated macrophages (TAMs) expressing the multi-ligand endocytic receptor mannose receptor (CD206/MRC1) contribute to tumor immunosuppression, angiogenesis, metastasis, and relapse. Here, we describe a peptide that selectively targets MRC1-expressing TAMs (MEMs). We performed in vivo peptide phage display screens in mice bearing 4T1 metastatic breast tumors to identify peptides that target peritoneal macrophages. Deep sequencing of the peptide-encoding inserts in the selected phage pool revealed enrichment of the peptide CSPGAKVRC (codenamed "UNO"). Intravenously injected FAM-labeled UNO (FAM-UNO) homed to tumor and sentinel lymph node MEMs in different cancer models: 4T1 and MCF-7 breast carcinoma, B16F10 melanoma, WT-GBM glioma and MKN45-P gastric carcinoma. Fluorescence anisotropy assay showed that FAM-UNO interacts with recombinant CD206 when subjected to reducing conditions. Interestingly, the GSPGAK motif is present in all CD206-binding collagens. FAM-UNO was able to transport drug-loaded nanoparticles into MEMs, whereas particles without the peptide were not taken up by MEMs. In ex vivo organ imaging, FAM-UNO showed significantly higher accumulation in sentinel lymph nodes than a control peptide. This study suggests applications for UNO peptide in diagnostic imaging and therapeutic targeting of MEMs in solid tumors.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lectinas Tipo C/metabolismo , Macrófagos/efectos de los fármacos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Lectinas de Unión a Manosa/metabolismo , Péptidos/uso terapéutico , Receptores de Superficie Celular/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Femenino , Receptor de Manosa , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA