RESUMEN
Previously, we found that age-dependent accumulation of beta-amyloid is not sufficient to cause synaptic decline. Late-endocytic organelles (LEOs) may be driving synaptic decline as lysosomes (Lys) are a target of cellular aging and relevant for synapses. We found that LAMP1-positive LEOs increased in size and number and accumulated near synapses in aged neurons and brains. LEOs' distal accumulation might relate to the increased anterograde movement in aged neurons. Dissecting the LEOs, we found that late-endosomes accumulated while there are fewer terminal Lys in aged neurites, but not in the cell body. The most abundant LEOs were degradative Lys or endolysosomes (ELys), especially in neurites. ELys activity was reduced because of acidification defects, supported by the reduction in v-ATPase subunit V0a1 with aging. Increasing the acidification of aged ELys recovered degradation and reverted synaptic decline, while alkalinization or v-ATPase inhibition, mimicked age-dependent Lys and synapse dysfunction. We identify ELys deacidification as a neuronal mechanism of age-dependent synapse loss. Our findings suggest that future therapeutic strategies to address endolysosomal defects might be able to delay age-related synaptic decline.
Asunto(s)
Neuronas , Sinapsis , Neuronas/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Adenosina Trifosfatasas/metabolismoRESUMEN
In the skin epidermis, melanin is produced and stored within melanosomes in melanocytes, and then transferred to keratinocytes. Different models have been proposed to explain the melanin transfer mechanism, which differ essentially in how melanin is transferred-either in a membrane-bound melanosome or as a melanosome core, that is, melanocore. Here, we investigated the endocytic route followed by melanocores and melanosomes during internalization by keratinocytes, by comparing the uptake of melanocores isolated from the supernatant of melanocyte cultures, with melanosomes isolated from melanocytes. We show that inhibition of actin dynamics impairs the uptake of both melanocores and melanosomes. Moreover, depletion of critical proteins involved in actin-dependent uptake mechanisms, namely Rac1, CtBP1/BARS, Cdc42 or RhoA, together with inhibition of Rac1-dependent signaling pathways or macropinocytosis suggest that melanocores are internalized by phagocytosis, whereas melanosomes are internalized by macropinocytosis. Interestingly, we found that Rac1, Cdc42 and RhoA are differently activated by melanocore or melanosome stimulation, supporting the existence of two distinct routes of melanin internalization. Furthermore, we show that melanocore uptake induces protease-activated receptor-2 (PAR-2) internalization by keratinocytes to a higher extent than melanosomes. Because skin pigmentation was shown to be regulated by PAR-2 activation, our results further support the melanocore-based mechanism of melanin transfer and further refine this model, which can now be described as coupled melanocore exo/phagocytosis.
Asunto(s)
Melaninas , Receptor PAR-2 , Actinas/metabolismo , Queratinocitos/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Fagocitosis/fisiología , Receptor PAR-2/metabolismoRESUMEN
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Asunto(s)
Lisosomas , Redes y Vías Metabólicas , Lisosomas/metabolismo , Transducción de SeñalRESUMEN
Foxp3(+) T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes.
Asunto(s)
Exosomas/genética , MicroARNs/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Antígenos CD19/inmunología , Linfocitos B/inmunología , Proliferación Celular , Citocinas/metabolismo , ARN Helicasas DEAD-box/genética , Exosomas/inmunología , Exosomas/metabolismo , Femenino , Factores de Transcripción Forkhead/inmunología , Transferencia de Gen Horizontal/genética , Inflamación/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/genética , Interferencia de ARN , Ribonucleasa III/genética , Células Th17/inmunología , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTPRESUMEN
Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/- photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement.
Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/genética , Membranas Mitocondriales/ultraestructura , Visión Ocular/genética , Animales , Membrana Celular/genética , Membrana Celular/ultraestructura , Células Ependimogliales/metabolismo , Células Ependimogliales/ultraestructura , Humanos , Ratones , Microscopía Electrónica , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Células Fotorreceptoras/ultraestructura , Visión Ocular/fisiologíaRESUMEN
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Asunto(s)
Melaninas , Melanocitos , Humanos , Melanocitos/fisiología , Queratinocitos/fisiología , Epidermis , Pigmentación de la Piel , MelanosomasRESUMEN
Intercellular communication orchestrates effective immune responses against disease-causing agents. Extracellular vesicles (EVs) are potent mediators of cell-cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell. Here, we show that formation of cognate primary T-B lymphocyte immune contacts promotes transfer of a very restricted set of T-cell EV-microRNAs (mmu-miR20-a-5p, mmu-miR-25-3p, and mmu-miR-155-3p) to the B cell. Transferred EV-microRNAs target key genes that control B-cell function, including pro-apoptotic BIM and the cell cycle regulator PTEN. EV-microRNAs transferred during T-B cognate interactions also promote survival, proliferation, and antibody class switching. Using mouse chimeras with Rab27KO EV-deficient T cells, we demonstrate that the transfer of small EVs is required for germinal center reaction and antibody production in vivo, revealing a mechanism that controls B-cell responses via the transfer of EV-microRNAs of T-cell origin. These findings also provide mechanistic insight into the Griscelli syndrome, associated with a mutation in the Rab27a gene, and might explain antibody defects observed in this pathogenesis and other immune-related and inflammatory disorders.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Formación de Anticuerpos , Comunicación Celular , Centro Germinal , Ratones , MicroARNs/genéticaRESUMEN
The mechanisms that regulate skin pigmentation have been the subject of intense research in recent decades. In contrast with melanin biogenesis and transport within melanocytes, little is known about how melanin is transferred and processed within keratinocytes. Several models have been proposed for how melanin is transferred, with strong evidence supporting coupled exo/endocytosis. Recently, two reports suggest that upon internalization, melanin is stored within keratinocytes in an arrested compartment, allowing the pigment to persist for long periods. In this commentary, we identify a striking parallelism between melanin processing within keratinocytes and the host-pathogen interaction with Plasmodium, opening new avenues to understand the complex molecular mechanisms that ensure skin pigmentation and photoprotection.
Asunto(s)
Queratinocitos , Melaninas , Interacciones Huésped-Patógeno , Melanocitos , Pigmentación de la PielRESUMEN
Rab GTPases are compartment-specific molecular switches that regulate intracellular vesicular transport in eukaryotes. GDP/GTP exchange factors (GEFs) control Rab activation, and current models propose that localised and regulated GEF activity is important in targeting Rabs to specific membranes. Here, we investigated the mechanism of GEF function using the Rab27a GEF, Rab3GEP (also known as MADD), in melanocytes as a model. We show that Rab3GEP-deficient melanocytes (melan-R3GKO) manifest partial disruption of melanosome dispersion, a read-out of Rab27a activation and targeting. Using rescue of melanosome dispersion in melan-R3GKO cells and effector pull-down approaches we show that the DENN domain of Rab3GEP (conserved among RabGEFs) is necessary, but insufficient, for its cellular function and GEF activity. Finally, using a mitochondrial re-targeting strategy, we show that Rab3GEP can target Rab27a to specific membranes in a GEF-dependent manner. We conclude that Rab3GEP facilitates the activation and targeting of Rab27a to specific membranes, but that it differs from other DENN-containing RabGEFs in requiring DENN and non-DENN elements for both of these activities and by lacking compartment-specific localisation.
Asunto(s)
Transporte Biológico/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Animales , Melanocitos/citología , Melanocitos/metabolismo , Melanosomas/metabolismo , Ratones , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Cultivo Primario de Células , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismoRESUMEN
PURPOSE: To correlate drusen morphology and outer retinal status with autofluorescence (AF) imaging in patients with intermediate age-related macular degeneration. METHODS: Drusen type and morphology were analyzed using color fundus photography and spectral-domain optic coherence tomography, whereas fundus AF was used for drusen AF evaluation. Additional structural changes on spectral-domain optic coherence tomography, such as disruption of external limiting membrane, ellipsoid zone, and retinal pigment epithelium/Bruch membrane complex, as well as the presence of choroidal hypertransmission at correspondent locations were also evaluated and correlated with fundus AF findings. Spearman's correlation coefficient was used to analyze the correlation between spectral-domain optic coherence tomography morphological characteristics of drusen and AF appearance of the corresponding drusen. Strength of correlation was calculated (r), and a P value < 0.05 was considered statistically significant. RESULTS: Two hundred and twenty-eight drusen from 53 eyes of 53 patients were analyzed, 130 soft drusen (57.02%) and 98 cuticular drusen (42.98%). Sixty percent of the drusen were isoautofluorescent (n = 136), 35% hyperautofluorescent (n = 80), and 5% hypoautofluorescent (n = 12). We found positive correlation between drusen AF and hyperreflective foci (r = 0.4). Outer retinal layers morphology (external limiting membrane and ellipsoid zone status and hypertransmission) also correlates with autofluorescent findings (r = 0.3). CONCLUSION: Multimodal imaging reveals a broad spectrum of ultrastructural changes, which may reflect different stages in the evolution of drusen. Our results suggest that drusen morphological characteristics and autofluorescent findings are correlated but other factors or cofactors may be involved. The described correlations will help us understand new progression biomarkers of nonexudative age-related macular degeneration.
Asunto(s)
Angiografía con Fluoresceína/métodos , Oftalmoscopía/métodos , Imagen Óptica , Drusas Retinianas/diagnóstico , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Fondo de Ojo , Humanos , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
Among older adults, age-related macular degeneration (AMD) is a prevalent disabling condition that begins as subtle visual disturbances and can progress to permanent loss of central vision. In its late neovascular form, AMD is treatable with inhibitors of vascular endothelial growth factor, the key driver of exudative disease. In the atrophic form, treatment remains elusive. This review addresses the natural history of AMD - through early, intermediate, and advanced disease stages - and concentrates on diagnosis and risk stratification, deficiencies of current treatments, and the promising findings of emerging therapies.
Asunto(s)
Degeneración Macular , Factor A de Crecimiento Endotelial Vascular , Anciano , Ceguera , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/terapia , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidoresRESUMEN
The mechanisms by which the pigment melanin is transferred from melanocytes and processed within keratinocytes to achieve skin pigmentation remain ill-characterized. Nevertheless, several models have emerged in the past decades to explain the transfer process. Here, we review the proposed models for melanin transfer in the skin epidermis, the available evidence supporting each one, and the recent observations in favor of the exo/phagocytosis and shed vesicles models. In order to reconcile the transfer models, we propose that different mechanisms could co-exist to sustain skin pigmentation under different conditions. We also discuss the limited knowledge about melanin processing within keratinocytes. Finally, we pinpoint new questions that ought to be addressed to solve the long-lasting quest for the understanding of how basal skin pigmentation is controlled. This knowledge will allow the emergence of new strategies to treat pigmentary disorders that cause a significant socio-economic burden to patients and healthcare systems worldwide and could also have relevant cosmetic applications.
Asunto(s)
Epidermis/metabolismo , Queratinocitos/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Pigmentación de la Piel , Animales , HumanosRESUMEN
Extracellular vesicles, including exosomes, have recently been implicated as novel mediators of immune cell communication in mammals. However, roles for endogenously produced exosomes in regulating immune cell functions in vivo are just beginning to be identified. In this article, we demonstrate that Rab27a and Rab27b double-knockout (Rab27DKO) mice that are deficient in exosome secretion have a chronic, low-grade inflammatory phenotype characterized by elevated inflammatory cytokines and myeloproliferation. Upon further investigation, we found that some of these phenotypes could be complemented by wild-type (WT) hematopoietic cells or administration of exosomes produced by GM-CSF-expanded bone marrow cells. In addition, chronically inflamed Rab27DKO mice had a blunted response to bacterial LPS, resembling endotoxin tolerance. This defect was rescued by bone marrow exosomes from WT, but not miR-155-/-, cells, suggesting that uptake of miR-155-containing exosomes is important for a proper LPS response. Further, we found that SHIP1 and IRAK-M, direct targets of miR-155 that are known negative regulators of the LPS response, were elevated in Rab27DKO mice and decreased after treatment with WT, but not miR-155-/-, exosomes. Together, our study finds that Rab27-dependent exosome production contributes to homeostasis within the hematopoietic system and appropriate responsiveness to inflammatory stimuli.
Asunto(s)
Exosomas/metabolismo , Inflamación/inmunología , MicroARNs/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Enfermedad Aguda , Animales , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Tolerancia Inmunológica , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/patología , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP/genéticaRESUMEN
The outer segments of vertebrate rod photoreceptors are renewed every 10 d. Outer segment components are transported from the site of synthesis in the inner segment through the connecting cilium, followed by assembly of the highly ordered discs. Two models of assembly of discrete discs involving either successive fusion events between intracellular rhodopsin-bearing vesicles or the evagination of the plasma membrane followed by fusion of adjacent evaginations have been proposed. Here we use immuno-electron microscopy and electron tomography to show that rhodopsin is transported from the inner to the outer segment via the ciliary plasma membrane, subsequently forming successive evaginations that "zipper" up proximally, but at their leading edges are free to make junctions containing the protocadherin, PCDH21, with the inner segment plasma membrane. Given the physical dimensions of the evaginations, coupled with likely instability of the membrane cortex at the distal end of the connecting cilium, we propose that the evagination occurs via a process akin to blebbing and is not driven by actin polymerization. Disassembly of these junctions is accompanied by fusion of the leading edges of successive evaginations to form discrete discs. This fusion is topologically different to that mediated by the membrane fusion proteins, SNAREs, as initial fusion is between exoplasmic leaflets, and is accompanied by gain of the tetraspanin rim protein, peripherin.
Asunto(s)
Cadherinas/metabolismo , Membrana Celular/metabolismo , Células Fotorreceptoras/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Proteínas Relacionadas con las Cadherinas , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Ojo/metabolismo , Ojo/ultraestructura , Proteínas del Ojo/metabolismo , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/ultraestructura , Proteínas Qa-SNARE/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/ultraestructuraRESUMEN
Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3(Δex1-6) null mice, revealing classic 'fingerprint' lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3(Δex1) (-6) RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3(Δex1) (-) (6)-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3(Δex1) (-) (6) RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
Asunto(s)
Autofagia , Glicoproteínas de Membrana/deficiencia , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Fagosomas/metabolismo , Epitelio Pigmentado de la Retina/fisiopatología , Envejecimiento , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Fusión de Membrana , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microesferas , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/patología , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also known as GPR143), mutations in the human homologue of which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for the generation of cylindrical melanosomes in zebrafish, which in turn is required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together, our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localisation in the apical processes.
Asunto(s)
Albinismo Ocular/metabolismo , Melanosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Albinismo Ocular/embriología , Albinismo Ocular/genética , Animales , Modelos Animales de Enfermedad , Humanos , Melanosomas/genética , Receptores Acoplados a Proteínas G/genética , Epitelio Pigmentado de la Retina/embriología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Autophagy plays an important role in the defence against intracellular pathogens. However, some microorganisms can manipulate this host cell pathway to their advantage. In this study, we addressed the role of host cell autophagy during Plasmodium berghei liver infection. We show that vesicles containing the autophagic marker LC3 surround parasites from early time-points after invasion and throughout infection and colocalize with the parasitophorous vacuole membrane. Moreover, we show that the LC3-positive vesicles that surround Plasmodium parasites are amphisomes that converge from the endocytic and autophagic pathways, because they contain markers of both pathways. When the host autophagic pathway was inhibited by silencing several of its key regulators such as LC3, Beclin1, Vps34 or Atg5, we observed a reduction in parasite size. We also found that LC3 surrounds parasites in vivo and that parasite load is diminished in a mouse model deficient for autophagy. Together, these results show the importance of the host autophagic pathway for parasite development during the liver stage of Plasmodium infection.
Asunto(s)
Autofagia/fisiología , Interacciones Huésped-Parásitos/fisiología , Hígado/parasitología , Malaria/patología , Plasmodium berghei/patogenicidad , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Hígado/patología , Malaria/parasitología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismoRESUMEN
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Asunto(s)
Hígado/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/patogenicidad , Animales , Línea Celular Tumoral , Endocitosis , Hígado/parasitología , Ratones , Carga de Parásitos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Plasmodium berghei/fisiología , Transporte de Proteínas , Canales de Potencial de Receptor Transitorio/metabolismoRESUMEN
Defects in phagocytosis and degradation of photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE) are associated with aging and retinal disease. The daily burst of rod outer segment (ROS) phagocytosis by the RPE provides a unique opportunity to analyse phagosome processing in vivo. In mouse retinae, phagosomes containing stacked rhodopsin-rich discs were identified by immuno-electron microscopy. Early apical phagosomes stained with antibodies against both cytoplasmic and intradiscal domains of rhodopsin. During phagosome maturation, a remarkably synchronised loss of the cytoplasmic epitope coincided with movement to the cell body and preceded phagosome-lysosome fusion and disc degradation. Loss of the intradiscal rhodopsin epitope and disc digestion occurred upon fusion with cathepsin-D-positive lysosomes. The same sequential stages of phagosome maturation were identified in cultured RPE and macrophages challenged with isolated POS. Loss of the cytoplasmic rhodopsin epitope was insensitive to pH but sensitive to protease inhibition and coincided with the interaction of phagosomes with endosomes. Thus, during pre-lysosomal maturation of ROS-containing phagosomes, limited rhodopsin processing occurs upon interaction with endosomes. This potentially provides a sensitive readout of phagosome-endosome interactions that is applicable to multiple phagocytes.