Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(34): 12372-7, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114241

RESUMEN

The virally encoded site-specific recombinase Int collaborates with its accessory DNA bending proteins IHF, Xis, and Fis to assemble two distinct, very large, nucleoprotein complexes that carry out either integrative or excisive recombination along regulated and essentially unidirectional pathways. The core of each complex consists of a tetramer of Integrase protein (Int), which is a heterobivalent DNA binding protein that binds and bridges a core-type DNA site (where strand cleavage and ligation are executed), and a distal arm-type site, that is brought within range by one or more DNA bending proteins. The recent determination of the patterns of these Int bridges has made it possible to think realistically about the global architecture of the recombinogenic complexes. Here, we combined the previously determined Int bridging patterns with in-gel FRET experiments and in silico modeling to characterize and differentiate the two 400-kDa multiprotein Holiday junction recombination intermediates formed during λ integration and excision. The results lead to architectural models that explain how integration and excision are regulated in λ site-specific recombination. Our confidence in the basic features of these architectures is based on the redundancy and self-consistency of the underlying data from two very different experimental approaches to establish bridging interactions, a set of strategic intracomplex distances from FRET experiments, and the model's ability to explain key aspects of the integrative and excisive recombination pathways, such as topological changes, the mechanism of capturing attB, and the features of asymmetry and flexibility within the complexes.


Asunto(s)
Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Lisogenia/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Activación Viral/genética , Sitios de Unión , Simulación por Computador , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Cruciforme/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Transferencia Resonante de Energía de Fluorescencia , Integrasas/química , Integrasas/genética , Integrasas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Nucleoproteínas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética , Proteínas Virales/química
2.
Proc Natl Acad Sci U S A ; 111(34): 12366-71, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114247

RESUMEN

The site-specific recombinase encoded by bacteriophage λ [λ Integrase (Int)] is responsible for integrating and excising the viral chromosome into and out of the chromosome of its Escherichia coli host. In contrast to the other well-studied and highly exploited tyrosine recombinase family members, such as Cre and Flp, Int carries out a reaction that is highly directional, tightly regulated, and depends on an ensemble of accessory DNA bending proteins acting on 240 bp of DNA encoding 16 protein binding sites. This additional complexity enables two pathways, integrative and excisive recombination, whose opposite, and effectively irreversible, directions are dictated by different physiological and environmental signals. Int recombinase is a heterobivalent DNA binding protein that binds via its small amino-terminal domain to high affinity arm-type DNA sites and via its large, compound carboxyl-terminal domain to core-type DNA sites, where DNA cleavage and ligation are executed. Each of the four Int protomers, within a multiprotein 400-kDa recombinogenic complex, is thought to bind and, with the aid of DNA bending proteins, bridge one arm- and one core-type DNA site. Despite a wealth of genetic, biochemical, and functional information generated by many laboratories over the last 50 y, it has not been possible to decipher the patterns of Int bridges, an essential step in understanding the architectures responsible for regulated directionality of recombination. We used site-directed chemical cross-linking of Int in trapped Holliday junction recombination intermediates and recombination reactions with chimeric recombinases, to identify the unique and monogamous patterns of Int bridges for integrative and excisive recombination.


Asunto(s)
Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Integrasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Cruciforme/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología , Integrasas/química , Integrasas/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética , Proteínas Virales/química , Activación Viral/genética , Integración Viral/genética
3.
Nat Commun ; 9(1): 927, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500338

RESUMEN

The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.


Asunto(s)
Caenorhabditis elegans/efectos de la radiación , Luz/efectos adversos , Longevidad/efectos de la radiación , Estrés Oxidativo , Acetilcisteína , Animales , Antioxidantes , Ácido Ascórbico , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Fotoperiodo , Respuesta de Proteína Desplegada
4.
Autophagy ; 12(2): 261-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26671266

RESUMEN

Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis.


Asunto(s)
Autofagia , Caenorhabditis elegans/fisiología , Lipoproteínas/biosíntesis , Longevidad/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Regulación de la Expresión Génica , Silenciador del Gen , Mucosa Intestinal/metabolismo , Lipasa/metabolismo , Lipólisis , Lisosomas/metabolismo , Transcripción Genética , Vitelogénesis/genética , Vitelogeninas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA