Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1342496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384756

RESUMEN

Identification and manipulation of cellular energy regulation mechanisms may be a strategy to increase productivity in photosynthetic organisms. This work tests the hypothesis that polyphosphate synthesis and degradation play a role in energy management by storing or dissipating energy in the form of ATP. A polyphosphate kinase (ppk) knock-out strain unable to synthesize polyphosphate was generated in the cyanobacterium Synechocystis sp. PCC 6803. This mutant strain demonstrated higher ATP levels and faster growth than the wildtype strain in high-carbon conditions and had a growth defect under multiple stress conditions. In a strain that combined ppk deletion with heterologous expression of ethylene-forming enzyme, higher ethylene productivity was observed than in the wildtype background. These results support the role of polyphosphate synthesis and degradation as an energy regulation mechanism and suggest that such mechanisms may be effective targets in biocontainment design.

2.
Biotechnol J ; 18(12): e2200607, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641181

RESUMEN

Recent world events have led to an increased interest in developing rapid and inexpensive clinical diagnostic platforms for viral detection. Here, the development of a cell-free toehold switch-based biosensor, which does not require upstream amplification of target RNA, is described for the detection of RNA viruses. Toehold switches were designed to avoid interfering secondary structure in the viral RNA binding region, mutational hotspots, and cross-reacting sequences of other coronaviruses. Using these design criteria, toehold switches were targeted to a low mutation region of the SARS-CoV-2 genome nonstructural protein 2 (nsp2). The designs were tested in a cell-free system using trigger RNA based on the viral genome and a highly sensitive fluorescent reporter gene, mNeonGreen. The detection sensitivity of our best toehold design, CSU 08, was in the low picomolar range of target (trigger) RNA. To increase the sensitivity of our cell-free biosensor to a clinically relevant level, we developed a modular downstream amplification system that utilizes toehold switch activation of tobacco etch virus (TEV) protease expression. The TEV protease cleaves a quenched fluorescent reporter, both increasing the signal fold change between control and sample and increasing the sensitivity to a clinically relevant low femtomolar range for target RNA detection.


Asunto(s)
Técnicas Biosensibles , ARN Viral , ARN Viral/genética
3.
Front Microbiol ; 14: 1124274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275163

RESUMEN

Photosynthetic productivity is limited by low energy conversion efficiency in naturally evolved photosynthetic organisms, via multiple mechanisms that are not fully understood. Here we show evidence that extends recent findings that cyanobacteria use "futile" cycles in the synthesis and degradation of carbon compounds to dissipate ATP. Reduction of the glycogen cycle or the sucrose cycle in the model cyanobacterium Synechocystis 6803 led to redirection of cellular energy toward faster growth under simulated outdoor light conditions in photobioreactors that was accompanied by higher energy charge [concentration ratio of ATP/(ATP + ADP)]. Such manipulation of energy metabolism may have potential in engineering microalgal chassis cells to increase productivity of biomass or target metabolites.

4.
Front Microbiol ; 14: 1219318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529323

RESUMEN

Excess phosphorus (P) in wastewater effluent poses a serious threat to aquatic ecosystems and can spur harmful algal blooms. Revolving algal biofilm (RAB) systems are an emerging technology to recover P from wastewater before discharge into aquatic ecosystems. In RAB systems, a community of microalgae take up and store wastewater P as polyphosphate as they grow in a partially submerged revolving biofilm, which may then be harvested and dried for use as fertilizer in lieu of mined phosphate rock. In this work, we isolated and characterized a total of 101 microalgae strains from active RAB systems across the US Midwest, including 82 green algae, 9 diatoms, and 10 cyanobacteria. Strains were identified by microscopy and 16S/18S ribosomal DNA sequencing, cryopreserved, and screened for elevated P content (as polyphosphate). Seven isolated strains possessed at least 50% more polyphosphate by cell dry weight than a microalgae consortium from a RAB system, with the top strain accumulating nearly threefold more polyphosphate. These top P-hyperaccumulating strains include the green alga Chlamydomonas pulvinata TCF-48 g and the diatoms Eolimna minima TCF-3d and Craticula molestiformis TCF-8d, possessing 11.4, 12.7, and 14.0% polyphosphate by cell dry weight, respectively. As a preliminary test of strain application for recovering P, Chlamydomonas pulvinata TCF-48 g was reinoculated into a bench-scale RAB system containing Bold basal medium. The strain successfully recolonized the system and recovered twofold more P from the medium than a microalgae consortium from a RAB system treating municipal wastewater. These isolated P-hyperaccumulating microalgae may have broad applications in resource recovery from various waste streams, including improving P removal from wastewater.

5.
Front Plant Sci ; 13: 839446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310623

RESUMEN

Algae (including eukaryotic microalgae and cyanobacteria) have been genetically engineered to convert light and carbon dioxide to many industrially and commercially relevant chemicals including biofuels, materials, and nutritional products. At industrial scale, genetically engineered algae may be cultivated outdoors in open ponds or in closed photobioreactors. In either case, industry would need to address a potential risk of the release of the engineered algae into the natural environment, resulting in potential negative impacts to the environment. Genetic biocontainment strategies are therefore under development to reduce the probability that these engineered bacteria can survive outside of the laboratory or industrial setting. These include active strategies that aim to kill the escaped cells by expression of toxic proteins, and passive strategies that use knockouts of native genes to reduce fitness outside of the controlled environment of labs and industrial cultivation systems. Several biocontainment strategies have demonstrated escape frequencies below detection limits. However, they have typically done so in carefully controlled experiments which may fail to capture mechanisms of escape that may arise in the more complex natural environment. The selection of biocontainment strategies that can effectively kill cells outside the lab, while maintaining maximum productivity inside the lab and without the need for relatively expensive chemicals will benefit from further attention.

6.
Metab Eng Commun ; 10: e00117, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31908923

RESUMEN

Cyanobacterial biofuels have the potential to reduce the cost and climate impacts of biofuel production because primary carbon fixation and conversion to fuel are completed together in the cultivation of the cyanobacteria. Cyanobacterial biofuels, therefore, do not rely on costly organic carbon feedstocks that heterotrophs require, which reduces competition for agricultural resources such as arable land and freshwater. However, the published product titer achieved for most molecules of interest using cyanobacteria lag behind what has been achieved using yeast and Escherichia coli (E. coli) cultures. In Synechocystis sp. PCC 6803 (S. 6803), we attempted to increase the product titer of the sesquiterpene, bisabolene, which may be converted to bisabolane, a possible diesel replacement. We tested 19 strains of genetically modified S. 6803 with five different codon usage sequences of the bisabolene synthase from the grand fir tree (Abies grandis). At least three ribosome binding sites (most designed using the RBS Calculator) were tested for each codon usage sequence. We also tested strains with and without the farnesyl pyrophosphate synthase gene from E. coli. Bisabolene titers after five days of growth in continuous light ranged from un-detected to 7.8 â€‹mg/L. Bisabolene synthase abundance was measured and found to be well correlated with titer. Select strains were also tested in 12:12 light:dark cycles, where similar titers were reached after the same amount of light exposure time. One engineered strain was also tested in photobioreactors exposed to a simulated outdoor light pattern with maximum light intensity of 1600 â€‹µmol photons m-2 s-1. Here, the bisabolene titer reached 22.2 â€‹mg/L after 36 days of growth. Dramatic improvements in our ability to control gene expression in cyanobacteria such as S. 6803, and the co-utilization of additional metabolic engineering methods, are needed in order for these titers to improve to the levels reported for engineered E. coli.

7.
Methods Mol Biol ; 1927: 139-154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788790

RESUMEN

Synechocystis sp. PCC 6803 is a model cyanobacterium which has been investigated to produce a variety of fuels and chemicals. Genetic mutations are of interest for studying photosynthesis and engineering chemical production. Here, methods for culturing, preserving, and genetically transforming Synechocystis sp. PCC 6803 are detailed including methods to test promoter strength using the green fluorescent protein reporter. Furthermore, a method for markerless transformation of chromosomal DNA is presented. Sufficient details are provided to enable application by the novice investigator.


Asunto(s)
Cianobacterias/genética , Ingeniería Genética , Synechocystis/genética , Cianobacterias/metabolismo , Orden Génico , Genes Reporteros , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Recombinación Homóloga , Plásmidos/genética , Regiones Promotoras Genéticas , Recombinación Genética , Synechocystis/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA