RESUMEN
PURPOSE: To develop velocity selective arterial spin labeling (VSASL) protocols for prostate blood flow (PBF) and prostate blood volume (PBV) mapping. METHODS: Fourier-transform based velocity-selective inversion and saturation pulse trains were utilized in VSASL sequences to obtain blood flow and blood volume weighted perfusion signal, respectively. Here four cutoff velocities (Vcut = 0.25, 0.50, 1.00, and 1.50 cm/s) for PBF and PBV mapping sequences were evaluated with a parallel implementation in brain for measuring cerebral blood flow (CBF) and cerebral blood volume (CBV) with identical 3D readout. This study was performed at 3T on eight young and middle-aged healthy subjects comparing both perfusion weighted signal (PWS) and temporal SNR (tSNR). RESULTS: In contrast to CBF and CBV, the PWS of PBF and PBV were rather unobservable at Vcut of 1.00 or 1.50 cm/s and both PWS and tSNR of PBF and PBV considerably increased at the lower Vcut , indicating that blood moves much slower in prostate than in brain. Similar to the brain results, the tSNR of PBV-weighted signal was about two to four times over the corresponding values of PBF-weighted signal. The results also suggested a trend of reduced vascularity within prostate during aging. CONCLUSION: For prostate, a low Vcut of 0.25-0.50 cm/s seemed necessary for both PBF and PBV measurements to obtain adequate perfusion signal. As in brain, PBV mapping yielded a higher tSNR than PBF.
Asunto(s)
Angiografía por Resonancia Magnética , Próstata , Masculino , Persona de Mediana Edad , Humanos , Marcadores de Spin , Próstata/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Perfusión , Circulación Cerebrovascular/fisiologíaRESUMEN
PURPOSE: To assess the potential of DCE MR CEST urography for assessing renal function in mice with unilateral ureter obstruction (UUO) by simultaneous pH and renal uptake/clearance measurements following injection of iopamidol. METHODS: The right ureter of nine mice was obstructed via suture ligation. The animals were imaged at day 1, 2, and 3 post-obstruction on an 11.7T MRI scanner. Ninety-six sets of saturated CEST images at 4.3 and 5.5 ppm were collected. Renal pH values were obtained by calculating the signal ratio for these two frequencies and using a pH calibration curve. Renal time activity curves were measured as a percentage change in the post-injection CEST signal at 4.3 ppm relative to the average pre-injection signal. RESULTS: For the healthy mice, the time activity curves of both kidneys were nearly identical and displayed rapid excretion of contrast. For the UUO mice, the dynamic CEST curves for the obstructed kidneys displayed prolonged time to peak (TTP) values and delayed contrast excretion compared with the contralateral (CL) kidneys. Renal pH maps of the healthy animals showed similar acidic values for both kidneys (pH 6.65 ± 0.04 vs 6.67 ± 0.02), whereas in the obstructed kidneys there was a significant increase in pH values compared with the CL kidneys (pH 6.67 ± 0.08 vs 6.79 ± 0.11 in CL and UUO kidneys, respectively). CONCLUSION: Our findings indicate that DCE-MR-CEST urography can detect changes in renal uptake/excretion and pH homeostasis and distinguish between obstructed and unobstructed kidney as early as 1 day after UUO.
Asunto(s)
Uréter , Obstrucción Ureteral , Animales , Ratones , Obstrucción Ureteral/diagnóstico por imagen , Riñón/diagnóstico por imagen , Riñón/fisiología , Imagen por Resonancia Magnética/métodos , Concentración de Iones de Hidrógeno , UrografíaRESUMEN
Here, we describe and assess the potential of 14 newly synthesized imidazole-4,5-dicarboxyamides (I45DCs) for pH and perfusion imaging. A number of these aromatic compounds possess large labile proton chemical shifts (up to 7.7 ppm from water) because of their intramolecular hydrogen bonds and a second labile proton to allow for chemical exchange saturation transfer (CEST) signal ratio-based pH measurements. We have found that the contrast produced is strong for a wide range of substitutions and that the inflection points in the CEST signal ratio versus pH plots used to generate concentration-independent pH maps can be adjusted based on these subsitutions to tune the pH range that can be measured. These I45DC CEST agents have advantages over the triiodobenzenes currently employed for tumor and kidney pH mapping, both preclinically and in initial human studies. Finally, as CEST MRI combined with exogenous contrast has the potential to detect functional changes in the kidneys, we evaluated our highest performing anionic compound (I45DC-diGlu) on a unilateral urinary obstruction mouse model and observed lower contrast uptake in the obstructed kidney compared with the unobstructed kidney and that the unobstructed kidney displayed a pH of ~ 6.5 while the obstructed kidney had elevated pH and an increased range in pH values. Based on this, we conclude that the I45DCs have excellent imaging properties and hold promise for a variety of medical imaging applications, particularly renal imaging.
Asunto(s)
Medios de Contraste , Protones , Ratones , Animales , Humanos , Concentración de Iones de Hidrógeno , Medios de Contraste/química , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos , Imidazoles , Imagen de PerfusiónRESUMEN
PURPOSE: COVID-19 infection poses a significant risk of both renal injury and pulmonary embolism, producing a clinical challenge, as the criterion standard examination for pulmonary embolism, computed tomography angiography (CTA), requires the use of nephrotoxic iodinated contrast agents.Our investigation evaluated whether symptomatic COVID-19-positive patients without laboratory evidence of renal impairment are at increased risk for developing contrast-associated acute kidney injury (CA-AKI). METHOD: All COVID-19-positive patients undergoing noncontrast chest computed tomography and CTA at an apex tertiary medical center between March 1 and December 10, 2020, were retrospectively evaluated. A total of 258 renal-competent (estimated glomerular filtration rate >30) patients with baseline and 48- to 72-hour postexamination creatinine measurements were identified and analyzed for incidence of acute kidney injury (AKI) meeting the criteria for CA-AKI. RESULTS: Twenty-five of 191 patients undergoing CTA (13.1%) and 9 of the 67 undergoing noncontrast computed tomography (13.4%) experienced creatinine increases meeting the criteria for CA-AKI. Univariate and multivariate analyses accounting for known AKI risk factors revealed no correlation between iodinated contrast administration and the incidence AKI meeting the criteria for CA-AKI (univariable odds ratio, 0.97 [95% confidence interval, 0.43-2.20]; multivariable odds ratio, 0.97 [95% confidence interval, 0.40-2.36]). CONCLUSIONS: Renal-competent COVID-19 patients undergoing chest CTA may not have an increased risk of AKI. Additional studies are needed to confirm this preliminary finding.
Asunto(s)
Lesión Renal Aguda , COVID-19 , Embolia Pulmonar , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Angiografía , Medios de Contraste/efectos adversos , Creatinina , Tasa de Filtración Glomerular , Humanos , Incidencia , Riñón/diagnóstico por imagen , Estudios Retrospectivos , Factores de RiesgoRESUMEN
PURPOSE: Most existing non-contrast-enhanced methods for abdominal MR arteriography rely on a spatially selective inversion (SSI) pulse with a delay to null both static tissue and venous blood, and are limited to small spatial coverage due to the sensitivity to slow arterial inflow. Velocity-selective inversion (VSI) based approach has been shown to preserve the arterial blood inside the imaging volume at 1.5 T. Recently, velocity-selective saturation (VSS) pulse trains were applied to suppress the static tissue and have been combined with SSI pulses for cerebral MR arteriography at 3 T. The aim of this study is to construct an abdominal MRA protocol with large spatial coverage at 3 T using advanced velocity-selective pulse trains. METHODS: Multiple velocity-selective MRA protocols with different sequence modules and 3D acquisition methods were evaluated. Sequences using VSS only as well as SSI+VSS and VSI+VSS preparations were then compared among a group of healthy young and middle-aged volunteers. Using MRA without any preparations as reference, relative signal ratios and relative contrast ratios of different vascular segments were quantitatively analyzed. RESULTS: Both SSI+VSS and VSI+VSS arteriograms achieved high artery-to-tissue and artery-to-vein relative contrast ratios above aortic bifurcation. The SSI+VSS sequence yielded lower signal at the bilateral iliac arteries than VSI+VSS, reflecting the benefit of the VSI preparation for imaging the distal branches. CONCLUSION: The feasibility of noncontrast 3D MR abdominal arteriography was demonstrated on healthy volunteers using a combination of VSS pulse trains and SSI or VSI pulse.
Asunto(s)
Arterias , Angiografía por Resonancia Magnética , Abdomen/diagnóstico por imagen , Aorta Abdominal/diagnóstico por imagen , Angiografía Cerebral , Medios de Contraste , Humanos , Persona de Mediana EdadRESUMEN
Inflatable penile prostheses are a widely utilized treatment for erectile dysfunction. While MRI is the optimal imaging modality for patients with suspected implant complications, it is often unavailable in the acute setting. In light of these limitations, we present a case of urethral perforation by an implanted penile cylinder and its evaluation with contrast-enhanced computed tomography (CT) in an emergent setting.
RESUMEN
BACKGROUND: Bladder cancer is the sixth most common malignancy in the United States (US). Despite its high prevalence and the significant potential benefits of early detection, no reliable, cost-effective screening algorithm exists for asymptomatic patients at risk. Nonetheless, reports of incidentally identified early bladder cancer on CT/MRI scans performed for other indications are emerging in the literature. This represents a new opportunity for early detection, with over 80 million CT scans performed in the US yearly, 40% of which are abdominopelvic CTs. This investigation aims to define the imaging features of early bladder cancer, with the mission of facilitating early diagnosis. METHODS: Following IRB approval with a waiver of informed consent, a retrospective review was performed, identifying 624 patients with non-muscle-invasive bladder cancer diagnosed at Johns Hopkins Hospital between 2000 and 2019. Of these patients, 99 patients underwent pelvic CT within the 5 years preceding pathologic diagnosis. These imaging studies were reviewed retrospectively to evaluate for the presence and features of any focal bladder wall abnormality. RESULTS: Median age at the time of pathologic diagnosis was 70 years (range: 51-88 years), and 82% (81/99) of patients were male. A total of 226 CT studies were reviewed. The number of studies per patient ranged from 1 to 33. Median time interval between all available imaging and pathologic diagnosis was 14 months. A total of 62% (141/226) of the scans reviewed were performed for indications other than suspected urinary tract cancer (UTC). A bladder wall mass was visualized in 67% (66/99) of patients and on 35% (78/226) of scans performed before diagnosis. The majority (84%, 67/80) of masses were intraluminal. Mean transverse long- and short-axis measurements were 24 mm and 17 mm, respectively, with long dimension measurements ranging between 5 and 59 mm. CONCLUSIONS: Early bladder cancer was visualized on CT preceding pathologic diagnosis in more than 2/3 of patients, and the majority of scans were performed for indications other than suspected urinary tract cancer/UTC symptoms. These results suggest that cross-sectional imaging performed for other indications can serve as a resource for opportunistic bladder cancer screening, particularly in high-risk patients.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Algoritmos , PelvisRESUMEN
Urachal cancer is a rare but aggressive malignancy. A urachal mass concerning for adenocarcinoma was identified in a 32-year-old G2P1 female on 12-week ultrasound and confirmed on pelvic MRI. Due to progressive growth of the mass and refractory abdominal pain, a multi-disciplinary meeting was held, after which the patient chose to undergo an exploratory laparotomy. A tubo-ovarian abscess was identified involving the intestine, right ovary, fallopian tube, and communicating with a patent, necrotic urachus. This is the first reported case of a tubo-ovarian abscess masquerading as a urachal malignancy, which can present similarly with abdominal pain and irritative urinary symptoms.
RESUMEN
Upper urinary tract obstructions (UTOs) are blockages that inhibit the flow of urine through its normal course, leading to impaired kidney function. Imaging plays a significant role in the initial diagnosis of UTO, with anatomic imaging (primarily ultrasound (US) and non-contrast computed tomography (CT)) serving as screening tools for the detection of the dilation of the urinary collecting systems (i.e., hydronephrosis). Whether hydronephrosis represents UTO or a non-obstructive process is determined by functional imaging (typically nuclear medicine renal scintigraphy). If these exams reveal evidence of UTO but no discernable source, multiphase contrast enhanced CT urography and/or dynamic contrast enhanced MR urography (DCE-MRU) may be performed to delineate a cause. These are often performed in conjunction with direct ureteroscopic evaluation. While contrast-enhanced CT currently predominates, it can induce renal injury due to contrast induced nephropathy (CIN), subject patients to ionizing radiation and is limited in quantifying renal function (traditionally assessed by renal scintigraphy) and establishing the extent to which hydronephrosis is due to functional obstruction. Traditional MRI is similarly limited in its ability to quantify function. DCE-MRU presents concerns regarding nephrogenic systemic fibrosis (NSF), although decreased with newer gadolinium-based contrast agents, and regarding cumulative gadolinium deposition in the basal ganglia. DCE-MR CEST urography is a promising alternative, employing new MRI contrast agents and imaging schemes and allowing for concurrent assessment of renal anatomy and functional parameters. In this review we highlight clinical challenges in the diagnosis and management of UTO, identify key advances in imaging agents and techniques for DCE-MR CEST urography and provide perspective on how this technique may evolve in clinical importance.
Asunto(s)
Hidronefrosis , Imagen por Resonancia Magnética , Medios de Contraste/efectos adversos , Humanos , Hidronefrosis/diagnóstico por imagen , UrografíaRESUMEN
The use of magnetic resonance imaging (MRI) for image-guided intervention poses both great opportunity and challenges. Although MRI is distinguished by its excellent contrast resolution and lack of ionizing radiation, it was not till the 1990s that technologic innovations allowed for adoption of MRI as a guidance modality for intervention. With advances in magnet, protocol, coil, biopsy needle, and ablation probe design, MRI has emerged as a viable, and increasingly, preferable alternative to other image guidance modalities. With the development of targeting software, augmented reality, robotic assist devices, and MR thermometry, the future of MRI-guided interventions remains promising.