Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 240(6): 2513-2529, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37604200

RESUMEN

Understanding the long-term impact of projected climate change on tropical rainforests is critical given their central role in the Earth's system. Palaeoecological records can provide a valuable perspective on this problem. Here, we examine the effects of past climatic changes on the dominant forest type of Southeast Asia - lowland dipterocarp forest. We use a range of proxies extracted from a 1400-yr-old lacustrine sedimentary sequence from north-eastern Philippines to determine long-term vegetation responses of lowland dipterocarp forest, including its dominant tree group dipterocarps, to changes in precipitation, fire and nutrient availability over time. Our results show a positive relationship between dipterocarp pollen accumulation rates (PARs) and leaf wax hydrogen isotope values, which suggests a negative effect of drier conditions on dipterocarp abundance. Furthermore, we find a positive relationship between dipterocarp PARs and the proxy for phosphorus availability, which suggests phosphorus controls the productivity of these keystone trees on longer time scales. Other pollen taxa show widely varying relationships with the abiotic factors, demonstrating a high diversity of plant functional responses. Our findings provide novel insights into lowland dipterocarp forest responses to changing climatic conditions in the past and highlight potential impacts of future climate change on this globally important ecosystem.


Asunto(s)
Cambio Climático , Ecosistema , Clima Tropical , Bosques , Árboles/fisiología , Fósforo
2.
Nature ; 531(7593): 229-32, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26886790

RESUMEN

The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.


Asunto(s)
Aclimatación , Cambio Climático , Ecosistema , Mapeo Geográfico , Fenómenos Fisiológicos de las Plantas , Américas , Regiones Árticas , Asia , Australia , Monitoreo del Ambiente , Actividades Humanas , Modelos Teóricos , Bosque Lluvioso , Temperatura , Factores de Tiempo , Árboles , Agua/análisis
3.
Biol Lett ; 17(1): 20200881, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497590

RESUMEN

Ecological resilience has become a focal concept in ecosystem management. Palaeoecological records (i.e. the sub-fossil remains preserved in sediments) are useful archives to address ecological resilience since they can be used to reconstruct long-term temporal variations in ecosystem properties. The special feature presented here includes nine new papers from members and associates of the PAGES EcoRe3 community. The papers build on previous work in palaeoecology to investigate, identify and compare components of ecosystem resilience on centennial to millennial timescales. There are four key messages that can be summarized from the findings of papers within the special feature: (i) multi-proxy studies reveal insights into the presence and mechanisms of alternative states; (ii) transitions between alternative states may not necessarily be abrupt; (iii) components of ecological resilience can be identified in long-term ecological data and (iv) the palaeoecological record can also provide insights into factors influencing the resilience of ecosystem functioning. Overall, these papers demonstrate the importance of using long-term ecological records for addressing questions related to the theoretical framework provided by ecological resilience.


Asunto(s)
Ecosistema , Fósiles , Ecología
4.
Photochem Photobiol Sci ; 18(2): 275-294, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30649121

RESUMEN

Ultraviolet-B radiation (UV-B, 280-315 nm) constitutes less than 1% of the total solar radiation that reaches the Earth's surface but has a disproportional impact on biological and ecological processes from the individual to the ecosystem level. Absorption of UV-B by ozone is also one of the primary heat sources to the stratosphere, so variations in UV-B have important relationships to the Earth's radiation budget. Yet despite its importance for understanding atmospheric and ecological processes, there is limited understanding about the changes in UV-B radiation in the geological past. This is because systematic measurements of total ozone and surface UV-B only exist since the 1970s, so biological or geochemical proxies from sediment archives are needed to reconstruct UV-B irradiance received at the Earth surface beyond the experimental record. Recent developments have shown that the quantification of UV-B-absorbing compounds in pollen and spores have the potential to provide a continuous record of the solar-ultraviolet radiation received by plants. There is increasing interest in developing this proxy in palaeoclimatic and palaeoecological research. However, differences in interpretation exist between palaeoecologists, who are beginning to apply the proxy under various geological settings, and UV-B ecologists, who question whether a causal dose-response relationship of pollen and spore chemistry to UV-B irradiance has really been established. Here, we use a proxy-system modelling approach to systematically assess components of the pollen- and spore-based UV-B-irradiance proxy to ask how these differences can be resolved. We identify key unknowns and uncertainties in making inferences about past UV-B irradiance, from the pollen sensor, the sedimentary archive, and through the laboratory and experimental procedures in order to target priority areas of future work. We argue that an interdisciplinary approach, modifying methods used by plant ecologists studying contemporary responses to solar-UV-B radiation specifically to suit the needs of palaeoecological analyses, provides a way forward in developing the most reliable reconstructions for the UV-B irradiance received by plants across a range of timescales.


Asunto(s)
Fósiles , Modelos Biológicos , Plantas/metabolismo , Polen/metabolismo , Energía Solar , Esporas/metabolismo , Rayos Ultravioleta
5.
Glob Chang Biol ; 23(5): 1942-1960, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27935187

RESUMEN

The forest-steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long-term forest-steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m-2  yr-1 ) and isotope composition of organic matter (δ13 CTOC ). Forest-steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near- and off-shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least-squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub-Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m-2  yr-1 . Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub-Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one-quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Carbono , Clima , Bosques , Sedimentos Geológicos , Siberia
6.
Ecol Appl ; 25(5): 1290-302, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26485956

RESUMEN

The local ecological footprinting tool (LEFT) uses globally available databases, modeling, and algorithms to, remotely assess locally important ecological features across landscapes based on five criteria: biodiversity (beta-diversity), vulnerability (threatened species), fragmentation, connectivity, and resilience. This approach can be applied to terrestrial landscapes at a 300-m resolution within a given target area. Input is minimal (latitude and longitude) and output is a computer-generated report and series of maps that both individually and synthetically depict the relative value of each ecological criteria. A key question for any such tool, however, is how representative is the remotely obtained output compared to what is on the ground. Here, we present the results from comparing remotely- vs. field-generated outputs from the LEFT tool on two distinct study areas for beta-diversity and distribution of threatened species (vulnerability), the two fields computed by LEFT for which such an approach is feasible. The comparison method consists of a multivariate measure of similarity between two fields based on discrete wavelet transforms, and reveals consistent agreement across a wide range of spatial scales. These results suggest that remote assessment tools such as LEFT hold great potential for determining key ecological features across landscapes and for being utilized in preplanning biodiversity assessment tools.


Asunto(s)
Biodiversidad , Nave Espacial , Ciudades , Bases de Datos Factuales , Monitoreo del Ambiente , Incertidumbre
7.
Sci Adv ; 9(34): eadi0570, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624886

RESUMEN

Liu et al. present evidence of increased abundance of UV-B-absorbing compounds in fossilized sporomorphs at the end-Permian mass extinction based on Fourier transform infrared (FTIR) spectroscopy. Their approach assumes that UV-B-absorbing compounds are present in the fossilized sporomorphs spanning the extinction interval and that they can be quantified using FTIR. However, further analysis reveals that the signal that they aim to focus on is weak and poorly resolved against nonrandom background interference most likely associated with water vapor. We also show that the peak detection methods that they use are inappropriate for use on these fossil sporomorphs because their methods select only 3.9% of the spectra at the target waveband of interest. The reconstruction that they present is based on baseline variations in the spectra and cannot be confidently attributed to variations in UV-B-absorbing compounds. "Direct" evidence for UV-B radiation at the end-Permian mass extinction cannot be claimed to have been observed in this record.

8.
Curr Biol ; 31(14): R885-R887, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314709

RESUMEN

As well as guiding pollinators to the centre of flowers, areas of the corolla that absorb UV radiation may help to protect floral reproductive parts from solar UV radiation that would otherwise be reflected onto them. In their recent article, 'Floral pigmentation has responded rapidly to global change in ozone and temperature', Koski et al.1 compared herbarium specimens collected between 1941 and 2017 to investigate whether the size of the UV-absorbing area in the centre of flowers (called 'bullseyes', UV proportion, or UVP) has changed relative to the size of the flower over this period. The article, and a subsequent feature2, describe an increase in UVP of ∼2% per year across all taxa examined. However, the study's main conclusion that this trend can be partially related to changes in ozone and temperature does not withstand close examination.


Asunto(s)
Flores , Ozono Estratosférico , Pigmentación , Reproducción , Rayos Ultravioleta
9.
Science ; 372(6544): 860-864, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34016781

RESUMEN

Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago.

10.
J Phycol ; 47(4): 861-79, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27020022

RESUMEN

The diatoms (Bacillariophyta) from a coastal lagoon from the Diablas wetlands (Isla Isabela, the Galápagos Islands) were studied in material from surface samples and a sediment core spanning the past 2,700 years in order to examine evidence of diatom evolution under geographic isolation. The total number of taxa found was ∼100. Ultrastructural variation in valve morphology between members of Galápagos taxa was used to describe 10 species from the genus Navicula sensu stricto, which are new to science. Four taxa: N. isabelensis, N. isabelensoides, N. isabelensiformis, and N. isabelensiminor, shared several key characteristics that may be indicative of a common evolutionary heritage; these species therefore provide possible evidence for the in situ evolution of diatoms in the Galápagos coastal lagoons. Shared morphological characteristics include: (i) stria patterning in the central area, (ii) an elevated and thickened external raphe-sternum, (iii) external central raphe endings that are slightly deflected toward the valve primary side, and (iv) an arched valve surface. To explain these findings, two models were proposed. The first suggested limited lateral diatomaceous transport of Navicula species between the Galápagos and continental South America. Alternatively, these new species may be ecological specialists arising from the unique environmental conditions of the Galápagos coastal lagoons, which restrict the colonization of common diatom taxa and enable the establishment of novel, rare species. The Diablas wetlands are an important site for diatom research, where local-scale environmental changes have combined with global-scale biogeographic processes resulting in unique diatom assemblages.

11.
PLoS One ; 6(7): e22376, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811594

RESUMEN

BACKGROUND: The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1) at the end of the 21(st) century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? METHODOLOGY/PRINCIPAL FINDINGS: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13)C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. CONCLUSIONS/SIGNIFICANCE: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.


Asunto(s)
Ecosistema , Calibración , Isótopos de Carbono , Ecuador , Geografía , Marcaje Isotópico , Espectrometría de Masas , Modelos Biológicos , Océanos y Mares , Salinidad , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA