RESUMEN
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Orchidaceae/clasificación , Transcriptoma , Elementos Transponibles de ADN , Ecología , Ambiente , Genoma de Planta , GenómicaRESUMEN
Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3' regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles.
Asunto(s)
Arabidopsis/genética , Cromatina/metabolismo , Epigénesis Genética , Reordenamiento Génico , Regiones no Traducidas 3'/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Inmunoprecipitación de Cromatina , Metilación de ADN , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , Mutagénesis , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética , Recombinación Genética/genética , Eliminación de Secuencia/genética , Activación Transcripcional/genéticaRESUMEN
Reduced birth weight and slow neonatal growth are risks correlated with the development of common diseases in adulthood. The Human Growth Hormone/Chorionic Somatomammotropin (hGH/CSH) gene cluster (48 kb) at 17q22-24, consisting of one pituitary-expressed postnatal (GH1) and four placental genes (GH2, CSH1, CSH2, and CSHL1) may contribute to common variation in intrauterine and infant growth, and also to the regulation of feto-maternal and adult glucose metabolism. In contrast to GH1, there are limited genetic data on the hGH/CSH genes expressed in utero. We report the first survey of sequence variation encompassing all five hGH/CSH genes. Resequencing identified 113 SNPs/indels (ss86217675-ss86217787 in dbSNP) including 66 novel variants, and revealed remarkable differences in diversity patterns among the homologous duplicated genes as well as between the study populations of European (Estonians), Asian (Han Chinese), and African (Mandenkalu) ancestries. A dominant feature of the hGH/CSH region is hyperactive gene conversion, with the rate exceeding tens to hundreds of times the rate of reciprocal crossing-over and resulting in near absence of linkage disequilibrium. The initiation of gene conversion seems to be uniformly distributed because the data do not predict any recombination hotspots. Signatures of different selective constraints acting on each gene indicate functional specification of the hGH/CSH genes. Most strikingly, the GH2 coding for placental growth hormone shows strong intercontinental diversification (F(ST)=0.41-0.91; p<10(-6)) indicative of balancing selection, whereas the flanking CSH1 exhibits low population differentiation (F(ST)=0.03-0.09), low diversity (non-Africans, pi=8-9 x 10(-5); Africans, pi=8.2 x 10(-4)), and one dominant haplotype worldwide, consistent with purifying selection. The results imply that the success of an association study targeted to duplicated genes may be enhanced by prior resequencing of the study population in order to determine polymorphism distribution and relevant tag-SNPs.
Asunto(s)
Conversión Génica/genética , Hormona de Crecimiento Humana/genética , Lactógeno Placentario/genética , Alelos , Pueblo Asiatico/genética , Población Negra/genética , Variación Genética , Genoma Humano , Haplotipos , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Población Blanca/genéticaRESUMEN
Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition.