Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 555(7698): 662-666, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29539642

RESUMEN

Acute pain represents a crucial alarm signal to protect us from injury. Whereas the nociceptive neurons that convey pain signals were described more than a century ago, the molecular sensors that detect noxious thermal or mechanical insults have yet to be fully identified. Here we show that acute noxious heat sensing in mice depends on a triad of transient receptor potential (TRP) ion channels: TRPM3, TRPV1, and TRPA1. We found that robust somatosensory heat responsiveness at the cellular and behavioural levels is observed only if at least one of these TRP channels is functional. However, combined genetic or pharmacological elimination of all three channels largely and selectively prevents heat responses in both isolated sensory neurons and rapidly firing C and Aδ sensory nerve fibres that innervate the skin. Strikingly, Trpv1-/-Trpm3-/-Trpa1-/- triple knockout (TKO) mice lack the acute withdrawal response to noxious heat that is necessary to avoid burn injury, while showing normal nociceptive responses to cold or mechanical stimuli and a preserved preference for moderate temperatures. These findings indicate that the initiation of the acute heat-evoked pain response in sensory nerve endings relies on three functionally redundant TRP channels, representing a fault-tolerant mechanism to avoid burn injury.


Asunto(s)
Calor/efectos adversos , Dolor Nociceptivo/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Sensación Térmica/fisiología , Animales , Quemaduras/fisiopatología , Quemaduras/prevención & control , Frío/efectos adversos , Femenino , Masculino , Ratones , Ratones Noqueados , Terminaciones Nerviosas/fisiología , Fibras Nerviosas/fisiología , Nocicepción/fisiología , Células Receptoras Sensoriales/fisiología , Piel/inervación , Piel/fisiopatología , Canal Catiónico TRPA1/deficiencia , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Sensación Térmica/genética
2.
Nature ; 559(7713): E7, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720653

RESUMEN

In this Letter, the trace is missing in Fig. 1e. This error has been corrected online.

3.
Eur Heart J ; 43(40): 4195-4207, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35822895

RESUMEN

AIMS: Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS: In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION: The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.


Asunto(s)
Canales Catiónicos TRPM , Taquicardia Ventricular , Ratones , Animales , Calcio/metabolismo , Ácido Meclofenámico/metabolismo , Arritmias Cardíacas , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPM/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806007

RESUMEN

The Transient Receptor Potential Ankyrin 1 cation channel (TRPA1) is a broadly-tuned chemosensor expressed in nociceptive neurons. Multiple TRPA1 agonists are chemically unrelated non-electrophilic compounds, for which the mechanisms of channel activation remain unknown. Here, we assess the hypothesis that such chemicals activate TRPA1 by inducing mechanical perturbations in the plasma membrane. We characterized the activation of mouse TRPA1 by non-electrophilic alkylphenols (APs) of different carbon chain lengths in the para position of the aromatic ring. Having discarded oxidative stress and the action of electrophilic mediators as activation mechanisms, we determined whether APs induce mechanical perturbations in the plasma membrane using dyes whose fluorescence properties change upon alteration of the lipid environment. APs activated TRPA1, with potency increasing with their lipophilicity. APs increased the generalized polarization of Laurdan fluorescence and the anisotropy of the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH), also according to their lipophilicity. Thus, the potency of APs for TRPA1 activation is an increasing function of their ability to induce lipid order and membrane rigidity. These results support the hypothesis that TRPA1 senses non-electrophilic compounds by detecting the mechanical alterations they produce in the plasma membrane. This may explain how structurally unrelated non-reactive compounds induce TRPA1 activation and support the role of TRPA1 as an unspecific sensor of potentially noxious compounds.


Asunto(s)
Membrana Celular/metabolismo , Fenoles/farmacología , Canal Catiónico TRPA1/agonistas , Animales , Anisotropía , Células CHO , Calcio/metabolismo , Canales de Calcio/metabolismo , Carbono/química , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ligandos , Lípidos de la Membrana , Ratones , Nociceptores/metabolismo , Estrés Oxidativo
5.
Pflugers Arch ; 468(4): 593-607, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26631168

RESUMEN

TRPM4 is a calcium-activated but calcium-impermeable non-selective cation (CAN) channel. Previous studies have shown that TRPM4 is an important regulator of Ca(2+)-dependent changes in membrane potential in excitable and non-excitable cell types. However, its physiological significance in neurons of the central nervous system remained unclear. Here, we report that TRPM4 proteins form a CAN channel in CA1 neurons of the hippocampus and we show that TRPM4 is an essential co-activator of N-methyl-D-aspartate (NMDA) receptors (NMDAR) during the induction of long-term potentiation (LTP). Disrupting the Trpm4 gene in mice specifically eliminates NMDAR-dependent LTP, while basal synaptic transmission, short-term plasticity, and NMDAR-dependent long-term depression are unchanged. The induction of LTP in Trpm4 (-/-) neurons was rescued by facilitating NMDA receptor activation or post-synaptic membrane depolarization. Accordingly, we obtained normal LTP in Trpm4 (-/-) neurons in a pairing protocol, where post-synaptic depolarization was applied in parallel to pre-synaptic stimulation. Taken together, our data are consistent with a novel model of LTP induction in CA1 hippocampal neurons, in which TRPM4 is an essential player in a feed-forward loop that generates the post-synaptic membrane depolarization which is necessary to fully activate NMDA receptors during the induction of LTP but which is dispensable for the induction of long-term depression (LTD). These results have important implications for the understanding of the induction process of LTP and the development of nootropic medication.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales Sinápticos , Canales Catiónicos TRPM/metabolismo , Animales , Región CA1 Hipocampal/citología , Células Cultivadas , Retroalimentación Fisiológica , Ratones , Neuronas/fisiología , Canales Catiónicos TRPM/genética
6.
Pflugers Arch ; 466(3): 611-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24221356

RESUMEN

We recently proposed that the transient receptor potential melastatin 5 (TRPM5) cation channel contributes to glucose-induced electrical activity of the ß cell and positively influences glucose-induced insulin release and glucose homeostasis. In this study, we investigated Trpm5 expression and function in pancreatic islets from mouse models of type II diabetes. Gene expression analysis revealed a strong reduction of Trpm5 mRNA levels in pancreatic islets of db/db and ob/ob mice. The glucose-induced Ca(2+) oscillation pattern in db/db and ob/ob islets mimicked those of Trpm5 (-/-) islets. Leptin treatment of ob/ob mice not only reversed the diabetic phenotype seen in these mice but also upregulated Trpm5 expression. Leptin treatment had no additional effect on Trpm5 expression levels when plasma insulin levels were comparable to those of the vehicle-injected control group. In murine ß cell line, MIN6, insulin downregulated TRPM5 expression in a dose-dependent manner, unlike glucose or leptin. In conclusion, our data show that increased plasma insulin levels downregulate TRPM5 expression in pancreatic islets from leptin-deficient mouse models of type 2 diabetes.


Asunto(s)
Regulación hacia Abajo , Células Secretoras de Insulina/metabolismo , Insulina/sangre , Leptina/sangre , Canales Catiónicos TRPM/metabolismo , Animales , Línea Celular , Células Cultivadas , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Leptina/genética , Canales Catiónicos TRPM/genética
7.
Mol Pharmacol ; 84(3): 325-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23757176

RESUMEN

Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.


Asunto(s)
Isotiocianatos/farmacología , Canales Catiónicos TRPV/metabolismo , Animales , Sitios de Unión , Capsaicina/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Mutación , Técnicas de Placa-Clamp , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética
8.
Proc Natl Acad Sci U S A ; 107(11): 5208-13, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20194741

RESUMEN

Glucose homeostasis is critically dependent on insulin release from pancreatic beta-cells, which is strictly regulated by glucose-induced oscillations in membrane potential (V(m)) and the cytosolic calcium level ([Ca(2+)](cyt)). We propose that TRPM5, a Ca(2+)-activated monovalent cation channel, is a positive regulator of glucose-induced insulin release. Immunofluorescence revealed expression of TRPM5 in pancreatic islets. A Ca(2+)-activated nonselective cation current with TRPM5-like properties is significantly reduced in Trpm5(-/-) cells. Ca(2+)-imaging and electrophysiological analysis show that glucose-induced oscillations of V(m) and [Ca(2+)](cyt) have on average a reduced frequency in Trpm5(-/-) islets, specifically due to a lack of fast oscillations. As a consequence, glucose-induced insulin release from Trpm5(-/-) pancreatic islets is significantly reduced, resulting in an impaired glucose tolerance in Trpm5(-/-) mice.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Glucosa/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Canales Catiónicos TRPM/deficiencia , Animales , Cationes , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Secreción de Insulina , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Islotes Pancreáticos/citología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Fenotipo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
9.
Br J Pharmacol ; 179(14): 3560-3575, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-32780479

RESUMEN

BACKGROUND AND PURPOSE: Transient receptor potential melastatin 3 (TRPM3) is a non-selective cation channel that plays a pivotal role in the peripheral nervous system as a transducer of painful heat signals. Alternative splicing gives rise to several TRPM3 variants. The functional consequences of these splice isoforms are poorly understood. Here, the pharmacological properties of TRPM3 variants arising from alternative splicing in the pore-forming region were compared. EXPERIMENTAL APPROACH: Calcium microfluorimetry and patch clamp recordings were used to compare the properties of heterologously expressed TRPM3α1 (long pore variant) and TRPM3α2-α6 (short pore variants). Furthermore, site-directed mutagenesis was done to investigate the influence of the length of the pore loop on the channel function. KEY RESULTS: All short pore loop TRPM3α variants (TRPM3α2-α6) were activated by the neurosteroid pregnenolone sulphate (PS) and by nifedipine, whereas the long pore loop variant TRPM3α1 was insensitive to either compound. In contrast, TRPM3α1 was robustly activated by clotrimazole, a compound that does not directly activate the short pore variants but potentiates their responses to PS. Clotrimazole-activated TRPM3α1 currents were largely insensitive to established TRPM3α2 antagonists and were only partially inhibited upon activation of the µ opioid receptor. Finally, by creating a set of mutant channels with pore loops of intermediate length, we showed that the length of the pore loop dictates differential channel activation by PS and clotrimazole. CONCLUSION AND IMPLICATIONS: Alternative splicing in the pore-forming region of TRPM3 defines the channel's pharmacological properties, which depend critically on the length of the pore-forming loop. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Asunto(s)
Canales Catiónicos TRPM , Empalme Alternativo , Calcio/metabolismo , Clotrimazol , Isoformas de Proteínas/metabolismo , Canales Catiónicos TRPM/metabolismo
10.
Nat Rev Urol ; 18(3): 139-159, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536636

RESUMEN

Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.


Asunto(s)
Síntomas del Sistema Urinario Inferior/metabolismo , Músculo Liso/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Aferentes Viscerales/fisiopatología , Femenino , Humanos , Síntomas del Sistema Urinario Inferior/fisiopatología , Masculino , Músculo Liso/inervación , Músculo Liso/fisiopatología , Próstata/metabolismo , Próstata/fisiopatología , Sensación/fisiología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Uretra/metabolismo , Uretra/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiopatología , Urotelio/inervación
11.
Sci Adv ; 7(30)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301607

RESUMEN

Lower urinary tract dysfunction (LUTd) represents a major health care problem with a high, unmet medical need. Design of additional therapies for LUTd requires precise tools to study bladder storage and voiding (dys)function in animal models. We developed videocystometry in mice, combining intravesical pressure measurements with high-speed fluoroscopy of the urinary tract. Videocystometry substantially outperforms current state-of-the-art methods to monitor the urine storage and voiding process, by enabling quantitative analysis of voiding efficiency, urethral flow, vesicoureteral reflux, and the relation between intravesical pressure and flow, in both anesthetized and awake, nonrestrained mice. Using videocystometry, we identified localized bladder wall micromotions correlated with different states of the filling/voiding cycle, revealed an acute effect of TRPV1 channel activation on voiding efficiency, and pinpointed the effects of urethane anesthesia on urine storage and urethral flow. Videocystometry has broad applications, ranging from the elucidation of molecular mechanisms of bladder control to drug development for LUTd.


Asunto(s)
Urodinámica , Reflujo Vesicoureteral , Animales , Ratones , Vejiga Urinaria , Micción/fisiología , Urodinámica/fisiología , Rayos X
12.
J Clin Invest ; 117(11): 3453-62, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17948126

RESUMEN

Here we provide evidence for a critical role of the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) in normal bladder function. Immunofluorescence demonstrated TRPV4 expression in mouse and rat urothelium and vascular endothelium, but not in other cell types of the bladder. Intracellular Ca2+ measurements on urothelial cells isolated from mice revealed a TRPV4-dependent response to the selective TRPV4 agonist 4alpha-phorbol 12,13-didecanoate and to hypotonic cell swelling. Behavioral studies demonstrated that TRPV4-/- mice manifest an incontinent phenotype but show normal exploratory activity and anxiety-related behavior. Cystometric experiments revealed that TRPV4-/- mice exhibit a lower frequency of voiding contractions as well as a higher frequency of nonvoiding contractions. Additionally, the amplitude of the spontaneous contractions in explanted bladder strips from TRPV4-/- mice was significantly reduced. Finally, a decreased intravesical stretch-evoked ATP release was found in isolated whole bladders from TRPV4-/- mice. These data demonstrate a previously unrecognized role for TRPV4 in voiding behavior, raising the possibility that TRPV4 plays a critical role in urothelium-mediated transduction of intravesical mechanical pressure.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/metabolismo , Micción/fisiología , Adenosina Trifosfato/metabolismo , Animales , Conducta Animal/fisiología , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Ratas , Canales Catiónicos TRPV/genética , Vejiga Urinaria/anatomía & histología , Urodinámica , Urotelio/citología , Urotelio/metabolismo
13.
Cell Physiol Biochem ; 23(1-3): 9-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19255496

RESUMEN

The expression of the epithelial Na+ channel (ENaC) is tissue-specific and dependent on a variety of mediators and interacting proteins. Here we examined the role of intracellular Na+ ([Na+](i)) as a modulator of the expression of rat ENaC in Xenopus laevis oocytes. We manipulated [Na+](i) of ENaC-expressing oocytes in the range of 0-20 mM by incubating in extracellular solutions of different [Na+](o). Electrophysiological, protein biochemical and fluorescence optical methods were used to determine the effects of different [Na+]i on ENaC expression and membrane abundance. In voltage-clamp experiments we found that amiloride-sensitive ENaC current (Iami) and conductance (Gami) peak at a [Na+](i) of approximately 10 mM Na+, but were significantly reduced in 5 mM and 20 mM [Na+](i). Fluorescence intensity of EGFP-ENaC-expressing oocytes also followed a bell-shaped curve with a maximum at approximately 10 mM [Na+](i). In Western blot experiments with specific anti-ENaC antibodies the highest protein expression was found in ENaC-expressing oocytes with [Na+](i) of 10-15 mM. Since ENaC is also highly permeable for Li+, we incubated ENaC-expressing oocytes in different Li+ concentrations and found a peak of Iami and Gami with 5 mM Li+. The influence of [Na+](i) on the expression is not ENaC-specific, since expression of a Cl(-) channel (CFTR) and a Na+/glucose cotransporter (SGLT1) showed the same dependence on [Na+](i). We conclude that specific concentrations of Na+ and Li+ influence the expression and abundance of ENaC and other transport proteins in the plasma membrane in Xenopus laevis oocytes. Furthermore, we suggest the existence of a general mechanism dependent on monovalent cations that optimizes the expression of membrane proteins.


Asunto(s)
Proteínas Portadoras/metabolismo , Canales Epiteliales de Sodio/metabolismo , Oocitos/metabolismo , Sodio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteínas Portadoras/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Electrofisiología , Canales Epiteliales de Sodio/genética , Expresión Génica/genética , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Ratas , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
14.
J Gene Med ; 11(9): 813-23, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19533590

RESUMEN

BACKGROUND: Cystic fibrosis (CF) respiratory epithelia are characterized by a defect Cl(-) secretion and an increased Na(+) absorption through epithelial Na(+) channels (ENaC). The present study aimed to find an effective inhibitor of human ENaC with respect to replacing amiloride therapy for CF patients. Therefore, we developed specific antisense oligonucleotides (AON) that efficiently suppress Na(+) hyperabsorption by inhibiting the expression of the alpha-ENaC subunit. METHODS: We heterologously expressed ENaC in oocytes of Xenopus laevis for mass screening of AON. Additionally, primary cultures of human nasal epithelia were transfected with AON and were used for Ussing chamber experiments, as well as biochemical and fluorescence optical analyses. RESULTS: Screening of several AON by co-injection or sequential microinjection of AON and ENaC mRNA in X. laevis oocytes led to a sustained decrease in amiloride-sensitive current and conductance. Using primary cultures of human nasal epithelia, we show that AON effectively suppress amiloride-sensitive Na(+) absorption mediated by ENaC in CF and non-CF tissues. In western blot experiments, it could be shown that the amount of ENaC protein is effectively reduced after AON transfection. CONCLUSIONS: Our data comprise an initial step towards a preclinical test with AON to reduce Na(+) hyperabsorption in CF epithelia.


Asunto(s)
Fibrosis Quística/metabolismo , Bloqueadores del Canal de Sodio Epitelial , Oligonucleótidos Antisentido/farmacología , Sodio/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Canales Epiteliales de Sodio/genética , Humanos , Microelectrodos , Microscopía Fluorescente , Mucosa Nasal/metabolismo , ARN Mensajero/genética , Xenopus laevis
15.
J Neurosci ; 27(37): 9874-84, 2007 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-17855602

RESUMEN

TRPA1 is a calcium-permeable nonselective cation transient receptor potential (TRP) channel that functions as an excitatory ionotropic receptor in nociceptive neurons. TRPA1 is robustly activated by pungent substances in mustard oil, cinnamon, and garlic and mediates the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate a bimodal sensitivity of TRPA1 to menthol, a widely used cooling agent and known activator of the related cold receptor TRPM8. In whole-cell and single-channel recordings of heterologously expressed TRPA1, submicromolar to low-micromolar concentrations of menthol cause channel activation, whereas higher concentrations lead to a reversible channel block. In addition, we provide evidence for TRPA1-mediated menthol responses in mustard oil-sensitive trigeminal ganglion neurons. Our data indicate that TRPA1 is a highly sensitive menthol receptor that very likely contributes to the diverse psychophysical sensations after topical application of menthol to the skin or mucous membranes of the oral and nasal cavities.


Asunto(s)
Mentol/farmacología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores
16.
Nat Commun ; 8: 14733, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361903

RESUMEN

Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca2+-activated cation channel expressed in type II taste receptor cells and pancreatic ß-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5-/- mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes.


Asunto(s)
Diterpenos de Tipo Kaurano/farmacología , Glucósidos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Edulcorantes/farmacología , Canales Catiónicos TRPM/efectos de los fármacos , Gusto/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Femenino , Células HEK293 , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Canales Catiónicos TRPM/metabolismo
17.
Nat Commun ; 7: 10489, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26843440

RESUMEN

The cation channel TRPM8 plays a central role in the somatosensory system, as a key sensor of innocuously cold temperatures and cooling agents. Although increased functional expression of TRPM8 has been implicated in various forms of pathological cold hypersensitivity, little is known about the cellular and molecular mechanisms that determine TRPM8 abundance at the plasma membrane. Here we demonstrate constitutive transport of TRPM8 towards the plasma membrane in atypical, non-acidic transport vesicles that contain lysosomal-associated membrane protein 1 (LAMP1), and provide evidence that vesicle-associated membrane protein 7 (VAMP7) mediates fusion of these vesicles with the plasma membrane. In line herewith, VAMP7-deficient mice exhibit reduced functional expression of TRPM8 in sensory neurons and concomitant deficits in cold avoidance and icilin-induced cold hypersensitivity. Our results uncover a cellular pathway that controls functional plasma membrane incorporation of a temperature-sensitive TRP channel, and thus regulates thermosensitivity in vivo.


Asunto(s)
Membrana Celular/metabolismo , Frío , Hiperestesia/genética , Proteínas R-SNARE/genética , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPM/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Calcio/metabolismo , Femenino , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Hiperestesia/inducido químicamente , Hiperestesia/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Técnicas de Placa-Clamp , Pirimidinonas/toxicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ganglio del Trigémino/metabolismo
18.
FEBS Lett ; 515(1-3): 177-83, 2002 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-11943217

RESUMEN

We used oocytes of the South African clawed toad Xenopus laevis to express the three subunits of the epithelial Na(+) channel from rat distal colon (rENaC). We combined conventional dual-microelectrode voltage-clamp with continuous capacitance (C(m)) measurements and noise analysis to evaluate the effects of cAMP and Ni(2+) on rENaC. Control oocytes or rENaC-expressing oocytes exhibited no spontaneous fluctuations in current. However, in rENaC-expressing oocytes amiloride induced a marked plateau-shaped rise of the power density spectra. Recordings using four different concentrations of amiloride revealed that the blocker-channel interactions were of the first order. A cocktail of the membrane permeant cAMP analogue chlorophenylthio-cAMP and IBMX (cAMP cocktail) increased amiloride-sensitive current (I(ami)) and conductance (G(ami)). Furthermore, C(m) was also increased following cAMP application, indicating an increase in plasma membrane surface area. Noise analysis showed that cAMP increased the number of active channels in the oocyte membrane while single-channel current decreased. From these data we conclude that cAMP triggered exocytotic delivery of preformed rENaCs to the plasma membrane. Ni(2+) (2.5 mM) inhibited about 60% of the rENaC current and conductance while C(m) remained unaffected. Noise analysis revealed that this inhibition could be attributed to a decrease in the apparent channel density, while single-channel current did not change significantly. These observations argue for direct effects of Ni(2+) on channel activity rather than induction of endocytotic removal of active channels from the plasma membrane.


Asunto(s)
AMP Cíclico/farmacología , Níquel/farmacología , Oocitos/metabolismo , Canales de Sodio/biosíntesis , Canales de Sodio/efectos de los fármacos , Amilorida/farmacología , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Capacidad Eléctrica , Inhibidores Enzimáticos/farmacología , Canales Epiteliales de Sodio , Exocitosis/efectos de los fármacos , Líquido Intracelular/metabolismo , Microinyecciones , Oocitos/citología , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Procesamiento de Señales Asistido por Computador , Sodio/metabolismo , Canales de Sodio/genética , Xenopus laevis
19.
Sci Rep ; 4: 7111, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25407951

RESUMEN

Transient Receptor Potential (TRP) channels form a broadly expressed and functionally diverse family of cation channels involved in various (patho)physiological processes. Whereas the mechanisms that control opening of TRP channels have been extensively studied, little is known about the transport processes of TRP channels to and within the plasma membrane. Here we used Total Internal Reflection--Fluorescence Recovery after Photobleaching (TIR-FRAP) to selectively visualize and bleach the fluorescently labeled TRP channels TRPV2 and TRPM4 in close proximity of the glass-plasma membrane interface, allowing detailed analysis of their perimembrane dynamics. We show that recovery of TRPM4 occurs via 200-nm diameter transport vesicles, and demonstrate the full fusion of such vesicles with the plasma membrane. In contrast, TRPV2 recovery proceeded mainly via lateral diffusion from non-bleached areas of the plasma membrane. Analysis of the two-dimensional channel diffusion kinetics yielded 2D diffusion coefficients ranging between 0.1 and 0.3 µm(2)/s, suggesting that these TRP channels move relatively unrestricted within the plasma membrane. These data demonstrate distinct modes of TRP channel turnover at the plasma membrane and illustrate the usefulness of TIR-FRAP to monitor these processes with high resolution.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Vesículas Transportadoras/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Plásmidos/química , Plásmidos/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/genética , Transfección , Vesículas Transportadoras/ultraestructura
20.
Pflugers Arch ; 443(5-6): 882-91, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11889589

RESUMEN

We expressed the three subunits of the epithelial amiloride-sensitive Na(+) channel (ENaC) from rat distal colon heterologously in oocytes of Xenopus laevis and analysed blocker-induced fluctuations in current using conventional dual-microelectrode voltage-clamp. To minimize Na(+) accumulation we performed all experiments in low-Na(+) solutions (15 mM). Noise analysis revealed that control or ENaC-injected oocytes did not exhibit spontaneous relaxation noise. However, in ENaC-expressing oocytes, amiloride induced a distinct Lorentzian component in the power density spectra. With three amiloride concentrations and a linear analysis of the respective changes in the corner frequency f(c) (2 pi f(c) plot) we determined the rate constants k(on) and k(off) for the amiloride-ENaC interaction. At a clamp potential (V(m)) of -60 mV k(on) was 80.8 +/- 5.1 microM(-1) s(-1) and k(off) 15.4 +/- 4.2 s(-1). The half-maximal blocker concentration (K(mic,ami)) was 0.19 microM (V(m)=-60 mV). While k(on) was voltage-independent in the range -50 to -100 mV, k(off) and K(mic,ami) decreased significantly with increasing membrane hyperpolarization, resulting in an increased affinity of amiloride for its binding site on ENaC. Increasing extracellular [Na(+)] ([Na(+)](o)) led to saturation of ENaC. Subsequent noise analysis revealed that single-channel current increased non-linearly with [Na(+)](o) and that saturation was not due to a reduction in the number of open channels. The apparent affinity of Na(+) for its binding site on the channel was voltage dependent and increased with hyperpolarization. Noise analysis revealed that k(on) and k(off) for amiloride decreased with increasing [Na(+)](o), while the affinity of the amiloride-binding site did not change. These findings show that the affinity of rat intestinal ENaC for amiloride is voltage dependent and is influenced non-competitively by [Na(+)](o), indicating that Na(+) and amiloride do not compete for the same binding site at the channel.


Asunto(s)
Amilorida/farmacología , Diuréticos/farmacología , Canales de Sodio/fisiología , Sodio/farmacocinética , Animales , Artefactos , Capacidad Eléctrica , Canales Epiteliales de Sodio , Femenino , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Oocitos/fisiología , Técnicas de Placa-Clamp , Ratas , Canales de Sodio/efectos de los fármacos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA