Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 130: 1-11, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375788

RESUMEN

Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Óxido Nítrico/farmacología , Microglía , Neuroglía , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/prevención & control
2.
Inflammopharmacology ; 31(1): 119-128, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414831

RESUMEN

In prosperous countries, autoimmune illnesses affect minimum 7% of the community. Rheumatoid Arthritis (RA) as an autoimmune illness is thought to be induced through a variety of genomic, physiological, and biological factors. Many experts in the field of nanomedicine have looked to stem cells as a viable strategy to repair human tissue; however, exosomes have demonstrated greater potential in recent years. Exosomes, produced from stem cells in particular, have exhibited a high propensity to give therapeutic effects. To resist local cellular stress, they are secreted in a paracrine manner from cells. As a result, exosomes produced from stem cells can provide enormous health uses. If treatment is not given, autoantibodies produce synovial inflammation and arthritis, which can lead to chronic inflammation, and impairment. Exosomes could be administered for the treatment of RA, by acting as therapeutic vectors. Exosomes are murine extracellular vesicles that influence biological mechanisms and signal transduction by transporting genetic and protein components. Diseases like RA and bone fractures could be treated using cell-free therapeutic strategies if exosomes could be isolated from stem cells efficiently and packaged with specific restorative substances. To get to this position, many breakthroughs must be achieved, and the following review summarises the most recent developments in stem cell-derived exosomes, with a focus on the important literature on exosome dynamics in RA.


Asunto(s)
Artritis Reumatoide , Exosomas , Humanos , Animales , Ratones , Exosomas/genética , Exosomas/metabolismo , Artritis Reumatoide/metabolismo , Inflamación/metabolismo , Autoanticuerpos , Transducción de Señal
3.
Inflammopharmacology ; 31(4): 1577-1588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37335368

RESUMEN

Rheumatoid arthritis is a systemic chronic polyarticular autoimmune disorder of joints and joint membrane mainly affecting feet and hands. The pathological manifestation of the disease includes infiltration of immune cells, hyperplasia of the lining of synovium, formation of pannus and bone and cartilage destruction. If left untreated, the appearance of small focal necrosis, adhesion of granulation, and formation of fibrous tissue on the surface of articular cartilage is noted. The disease primarily affects nearly 1% of the population globally, women being more affected than men with a ratio 2:1 and can initiate regardless of any age. The synovial fibroblast in rheumatoid arthritis individuals exhibits an aggressive phenotype which upregulates the manifestation of protooncogenes, adhesive compounds, inflammatory cytokines and matrix-deteriorating enzymes. Apart from the inflammatory effects of cytokines, chemokines are also noted to induce swelling and pain in arthritic individuals by residing in synovial membrane and forming pannus. The current treatment of rheumatoid arthritis includes treatment with non-steroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, treatment with biologics such as inhibitors of TNF-α, interleukins, platelet activating factor, etc. which provides significant relief from symptoms and aids in management of the disease. The current review highlights the pathogenesis involved in the onset of rheumatoid arthritis and also covers epigenetic, cellular and molecular parameters associated with it to aid better and advanced therapeutic approaches for management of the debilitating disease.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Femenino , Humanos , Membrana Sinovial , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Epigénesis Genética
4.
Crit Rev Food Sci Nutr ; 62(19): 5372-5393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33998910

RESUMEN

Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disorder which is mainly characterized by inflammation in joints, bone erosions and cartilaginous destruction that leads to joint dysfunction, deformation, and/or permanent functional impairment. The prevalence of RA is increasing, incurring a considerable burden on healthcare systems globally. The exact etiology of RA is unknown, with various pathways implicated in its pathophysiology. Non-steroidal anti-inflammatory drugs (NSAIDs) including celecoxib, diclofenac and ibuprofen, disease-modifying anti-rheumatic drugs (DMARD) including azathioprine, methotrexate and cyclosporine, biological agents including anakinra, infliximab, and rituximab and immunosuppressants are used for symptomatic relief in patients with RA, but these medications have severe adverse effects such as gastric ulcers, hypertension, hepatotoxicity and renal abnormalities which restrict their use in the treatment of RA; new RA treatments with minimal side-effects are urgently required. There is accumulating evidence that dietary polyphenols may show therapeutic efficacy in RA through their antioxidant, anti-inflammatory, apoptotic, and immunosuppressant activities and modulation of the tumor necrosis factor-α (TNF-α), interleukin (IL)-6, mitogen-activated protein kinase (MAPK), IL-1ß, c-Jun N-terminal kinase (JNK), and nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways. While resveratrol, genistein, carnosol, epigallocatechin gallate, curcumin, kaempferol, and hydroxytyrosol have also been studied for the treatment of RA, the majority of data are derived from animal models. Here, we review the various pathways involved in the development of RA and the preclinical and clinical data supporting polyphenols as potential therapeutic agents in RA patients. Our review highlights that high-quality clinical studies are required to decisively establish the anti-rheumatic efficacy of polyphenolic compounds.


Asunto(s)
Artritis Reumatoide , Polifenoles , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico
5.
Metab Brain Dis ; 37(1): 1-16, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34436747

RESUMEN

During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin's potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Eritropoyetina , Fármacos Neuroprotectores , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Eritropoyetina/uso terapéutico , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Placa Amiloide/tratamiento farmacológico
6.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628545

RESUMEN

Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.


Asunto(s)
Cannabinoides , Endocannabinoides , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Humanos , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562956

RESUMEN

Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.


Asunto(s)
Neuropéptidos , Enfermedad de Parkinson , Neuronas Dopaminérgicas/metabolismo , Humanos , Inflamación/patología , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054862

RESUMEN

Parkinson's disease (PD) is a complicated and incapacitating neurodegenerative malady that emanates following the dopaminergic (DArgic) nerve cell deprivation in the substantia nigra pars compacta (SN-PC). The etiopathogenesis of PD is still abstruse. Howbeit, PD is hypothesized to be precipitated by an amalgamation of genetic mutations and exposure to environmental toxins. The aggregation of α-synucelin within the Lewy bodies (LBs), escalated oxidative stress (OS), autophagy-lysosome system impairment, ubiquitin-proteasome system (UPS) impairment, mitochondrial abnormality, programmed cell death, and neuroinflammation are regarded as imperative events that actively participate in PD pathogenesis. The central nervous system (CNS) relies heavily on redox-active metals, particularly iron (Fe) and copper (Cu), in order to modulate pivotal operations, for instance, myelin generation, synthesis of neurotransmitters, synaptic signaling, and conveyance of oxygen (O2). The duo, namely, Fe and Cu, following their inordinate exposure, are viable of permeating across the blood-brain barrier (BBB) and moving inside the brain, thereby culminating in the escalated OS (through a reactive oxygen species (ROS)-reliant pathway), α-synuclein aggregation within the LBs, and lipid peroxidation, which consequently results in the destruction of DArgic nerve cells and facilitates PD emanation. This review delineates the metabolism of Fe and Cu in the CNS, their role and disrupted balance in PD. An in-depth investigation was carried out by utilizing the existing publications obtained from prestigious medical databases employing particular keywords mentioned in the current paper. Moreover, we also focus on decoding the role of metal complexes and chelators in PD treatment. Conclusively, metal chelators hold the aptitude to elicit the scavenging of mobile/fluctuating metal ions, which in turn culminates in the suppression of ROS generation, and thereby prelude the evolution of PD.


Asunto(s)
Metales/efectos adversos , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Animales , Quelantes/farmacología , Quelantes/uso terapéutico , Humanos , Degeneración Nerviosa/complicaciones , Oxidación-Reducción , Estrés Oxidativo , Enfermedad de Parkinson/complicaciones
9.
Molecules ; 27(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268639

RESUMEN

Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Organismos Acuáticos/química , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Enfermedad Crónica , Ecosistema , Humanos , Océanos y Mares
10.
Molecules ; 27(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956919

RESUMEN

The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson's disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer's disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington's disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson's disease, Alzheimer's disease, ischemic stroke and depression.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos Cerebrovasculares/tratamiento farmacológico , Humanos , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico
11.
Inflammopharmacology ; 30(5): 1555-1567, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029362

RESUMEN

A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.


Asunto(s)
Artritis Reumatoide , Endotelina-1 , Antiinflamatorios/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Citocinas , Células Endoteliales , Endotelina-1/metabolismo , Endotelinas/metabolismo , Humanos , Especies Reactivas de Oxígeno , Superóxidos , Vasoconstrictores/uso terapéutico
12.
Inflammopharmacology ; 30(3): 737-748, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364736

RESUMEN

Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Factor A de Crecimiento Endotelial Vascular , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Humanos , Hipoxia/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Oxígeno/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Molecules ; 27(5)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35268685

RESUMEN

Reactive carbonyl species (RCS) may originate from the oxidation of unsaturated fatty acids and sugar in conditions of pathology. They are known to have high reactivity towards DNA as well as nucleophilic sites of proteins, resulting in cellular dysfunction. It has been considered that various pathological conditions are associated with an increased level of RCS and their reaction products. Thus, regulating the levels of RCS may be associated with the mitigation of various metabolic and neurodegenerative disorders. In order to perform a comprehensive review, various literature databases, including MEDLINE, EMBASE, along with Google Scholar, were utilized to obtain relevant articles. The voluminous review concluded that various synthetic and natural agents are available or in pipeline research that hold tremendous potential to be used as a drug of choice in the therapeutic management of metabolic syndrome, including obesity, dyslipidemia, diabetes, and diabetes-associated complications of atherosclerosis, neuropathy, and nephropathy. From the available data, it may be emphasized that various synthetic agents, such as carnosine and simvastatin, and natural agents, such as polyphenols and terpenoids, can become a drug of choice in the therapeutic management for combating metabolic syndromes that involve RCS in their pathophysiology. Since the RCS are known to regulate the biological processes, future research warrants detailed investigations to decipher the precise mechanism.


Asunto(s)
Síndrome Metabólico
14.
Biochem Biophys Res Commun ; 583: 14-21, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34715496

RESUMEN

COVID-19 pandemic has a major effect on world health, particularly on individuals suffering from severe diseases or old aged persons. Various case studies revealed that COVID-19 might increase the progression of Parkinson's disease (PD). Coxsackievirus, dengue virus Epstein-Barr virus, hepatitis C virus, Japanese encephalitis, Western equine encephalomyelitis virus, West Nile virus, and human immunodeficiency virus have all been linked to the development of transient or permanent parkinsonism, owing to the induction of neuroinflammation/hypoxic brain injury with structural/functional damage within the basal ganglia. Coronavirus mainly infects the alveolar cells and may lead to acute respiratory distress syndrome. SARS-CoV-2 invades cells via the ACE2 receptor, which is widely expressed in the central nervous system, where the virus may precipitate or accelerate dementia. SARS-CoV-2 could enter the central nervous system directly by the olfactory/vagus nerves or through the bloodstream. Here, we talked about the importance of this viral infection in terms of the CNS as well as its implications for people with Parkinson's disease; anosmia & olfaction-related impairments in COVID-19 & PD patients. And, also discussed the role of vitamin D to sustain the progression of Parkinson's disease and the COVID-19; regular vitamin D3 consumption of 2000-5000 IU/day may reduce the risk and severity of COVID-19 in parkinsonian patients.

15.
Neurochem Res ; 46(11): 2832-2851, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34357520

RESUMEN

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Antiinflamatorios/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Humanos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/terapia , Conducta de Reducción del Riesgo , Proteínas tau/antagonistas & inhibidores
16.
Neurochem Res ; 46(11): 2761-2775, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34075521

RESUMEN

Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.


Asunto(s)
Depresión/metabolismo , Factores de Transcripción Forkhead/metabolismo , Transducción de Señal/fisiología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Proteína Forkhead Box O1/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Norepinefrina/metabolismo , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Neurochem Res ; 46(7): 1589-1602, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33786718

RESUMEN

Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.


Asunto(s)
Depresión/fisiopatología , Proteínas Hedgehog/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Animales , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/etiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
Inflamm Res ; 70(9): 939-957, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34319417

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) is one of the centenarian metabolic disorders and is considered as a stellar and leading health issue worldwide. According to the International Diabetes Federation (IDF) Diabetes Atlas and National Diabetes Statistics, the number of diabetic patients will increase at an exponential rate from 463 to 700 million by the year 2045. Thus, there is a great need for therapies targeting functions that can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. 5' adenosine monophosphate-activated protein kinase (AMPK) activation, by various direct and indirect factors, might help to overcome the hurdles (like insulin resistance) associated with the conventional approach. MATERIALS AND RESULTS: A thorough review and analysis was conducted using various database including MEDLINE and EMBASE databases, with Google scholar using various keywords. This extensive review concluded that various drugs (plant-based, synthetic indirect/direct activators) are available, showing tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without causing insulin resistance, and improving insulin sensitivity. Moreover, these drugs have an effect against diabetes and are therapeutically beneficial in the treatment of diabetes-associated complications (neuropathy and nephropathy) via mechanism involving inhibition of nuclear translocation of SMAD4 (SMAD family member) expression and association with peripheral nociceptive neurons mediated by AMPK. CONCLUSION: From the available information, it may be concluded that various indirect/direct activators show tremendous potential in maintaining the homeostasis of glucose and lipid metabolism, without resulting in insulin resistance, and may improve insulin sensitivity, as well. Therefore, in a nut shell, it may be concluded that the regulation of APMK functions by various direct/indirect activators may bring promising results. These activators may emerge as a novel therapy in diabetes and its associated complications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Complicaciones de la Diabetes/enzimología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/enzimología , Regulación Enzimológica de la Expresión Génica , Animales , Berberina/química , Activación Enzimática , Glucosa/metabolismo , Homeostasis , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Fosforilación , Polifenoles/química , Conformación Proteica , Dominios Proteicos , Ratas , Tiazolidinedionas/química , Ácido Tióctico/química , Xilosa/química
19.
Prostaglandins Other Lipid Mediat ; 152: 106520, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249225

RESUMEN

BACKGROUND: Maintenance of weight is essential for sustenance, well-being and to endorse prolonged life. The prevalence of obesity is increasing at an alarming rate globally, due to modern lifestyle and dietary habits. Endocannabinoids are fatty acid derivatives and numerous studies are carried out which focuses and targets their relationship with obesity, via multiple signals which have been recently known for exerting crucial role in regulating energy balance. PURPOSE: This article aims at examining the prospects of endocannabinoids in obesity via directing the role of ECs in stimulating hunger. RESULT: In last few years, irregular stimulation of endocannabinoid system has been suggested as a chief element in the progression of obesity-associated metabolic complications. Certainly, this cascade system comprises of cannabinoid type1 and 2 receptors (CB1R and CB2R) along with their endogenous lipid ligands which are responsible for enhanced feeding behavior as well as lipid metabolism. Significantly, inhibiting CB1R activity might reduce metabolic abnormality linked with obesity. CONCLUSION: Conclusion withdrawn on the basis of supporting scientific data and evidences report that the blockade of cannabinoids can serve as a therapeutic potential for treatment of obesity. Future prospective aims at assessing molecular pathways which contributes towards ECS, elicited weight control and to evaluate how these mechanisms are presently relocated into the production of novel cannabinoid drugs exhibiting enriched care.


Asunto(s)
Endocannabinoides , Obesidad , Animales , Humanos
20.
Mol Biol Rep ; 48(3): 2881-2895, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33797660

RESUMEN

Vital for growth, proliferation, subsistence, and thermogenesis, autophagy is the biological cascade, which confers defence against aging and various pathologies. Current research has demonstrated de novo activity of autophagy in stimulation of biological events. There exists a significant association between autophagy activation and obesity, encompassing expansion of adipocytes which facilitates ß cell activity. The main objective of the manuscript is to enumerate intrinsic role of autophagy in obesity and associated complications. The peer review articles published till date were searched using medical databases like PubMed and MEDLINE for research, primarily in English language. Obesity is characterized by adipocytic hypertrophy and hyperplasia, which leads to imbalance of lipid absorption, free fatty acid release, and mitochondrial activity. Detailed evaluation of obesity progression is necessary for its treatment and related comorbidities. Data collected in regard to etiological sustaining of obesity, has revealed hypothesized energy misbalance and neuro-humoral dysfunction, which is stimulated by autophagy. Autophagy regulates chief salvaging events for protein clustering, excessive triglycerides, and impaired mitochondria which is accompanied by oxidative and genotoxic stress in mammals. Autophagy is a homeostatic event, which regulates biological process by eliminating lethal cells and reprocessing physiological constituents, comprising of proteins and fat. Unquestionably, autophagy impairment is involved in metabolic syndromes, like obesity. According to an individual's metabolic outline, autophagy activation is essential for metabolism and activity of the adipose tissue and to retard metabolic syndrome i.e. obesity. The manuscript summarizes the perception of current knowledge on autophagy stimulation and its effect on the obesity.


Asunto(s)
Autofagia/genética , Obesidad/genética , Obesidad/patología , Adipocitos/patología , Animales , Ensayos Clínicos como Asunto , Humanos , Estado Nutricional , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA