Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chromosoma ; 130(1): 53-60, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547955

RESUMEN

The heat shock factor 1 (HSF1)-dependent transcriptional activation of human pericentric heterochromatin in heat-shocked cells is the most striking example of transcriptional activation of heterochromatin. Until now, pericentric heterochromatin of chromosome 9 has been identified as the primary target of HSF1, in both normal and tumor heat-shocked cells. Transcriptional awakening of this large genomic region results in the nuclear accumulation of satellite III (SATIII) noncoding RNAs (ncRNAs) and the formation in cis of specific structures known as nuclear stress bodies (nSBs). Here, we show that, in four different male cell lines, including primary human fibroblasts and amniocytes, pericentric heterochromatin of chromosome Y can also serve as a unique primary site of HSF1-dependent heterochromatin transcriptional activation, production of SATIII ncRNA, and nucleation of nuclear stress bodies (nSBs) upon heat shock. Our observation suggests that the chromosomal origin of SATIII transcripts in cells submitted to heat shock is not a determinant factor as such, but that transcription of SATIII repetitive units or the SATIII ncRNA molecules is the critical element of HSF1-dependent transcription activation of constitutive heterochromatin.


Asunto(s)
Cromosomas Humanos Y/genética , ADN Satélite/genética , Fibroblastos/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Heterocromatina/genética , Factores de Empalme Serina-Arginina/metabolismo , Estrés Fisiológico , Femenino , Fibroblastos/citología , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Humanos , Masculino , Factores de Empalme Serina-Arginina/genética , Transcripción Genética
2.
J Biol Chem ; 294(46): 17543-17554, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578278

RESUMEN

Cell compartmentalization is an essential process by which eukaryotic cells separate and control biological processes. Although calmodulins are well-known to regulate catalytic properties of their targets, we show here their involvement in the subcellular location of two plant proteins. Both proteins exhibit a dual location, namely in the cytosol in addition to their association to plastids (where they are known to fulfil their role). One of these proteins, ceQORH, a long-chain fatty acid reductase, was analyzed in more detail, and its calmodulin-binding site was identified by specific mutations. Such a mutated form is predominantly targeted to plastids at the expense of its cytosolic location. The second protein, TIC32, was also shown to be dependent on its calmodulin-binding site for retention in the cytosol. Complementary approaches (bimolecular fluorescence complementation and reverse genetics) demonstrated that the calmodulin isoform CAM5 is specifically involved in the retention of ceQORH in the cytosol. This study identifies a new role for calmodulin and sheds new light on the intriguing CaM-binding properties of hundreds of plastid proteins, despite the fact that no CaM or CaM-like proteins were identified in plastids.


Asunto(s)
Proteínas de Arabidopsis/genética , Calmodulina/genética , Compartimento Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de la Membrana/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sitios de Unión/genética , Señalización del Calcio/genética , Calmodulina/química , Proteínas de Cloroplastos/química , Cloroplastos/química , Cloroplastos/genética , Citosol/química , Proteínas de la Membrana/química , Plastidios/química , Plastidios/genética , Unión Proteica/genética
3.
Annu Rev Genet ; 46: 233-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22934643

RESUMEN

Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.


Asunto(s)
Cloroplastos/metabolismo , Citoplasma/metabolismo , Plastidios/metabolismo , Dióxido de Carbono/metabolismo , Compartimento Celular , Proteínas de Cloroplastos/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Tamaño de los Orgánulos , Oxidación-Reducción , Fotosíntesis , Células Vegetales/metabolismo , Transporte de Proteínas , Proteómica/métodos , Simbiosis
4.
Plant Physiol ; 174(2): 922-934, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28442501

RESUMEN

Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers.


Asunto(s)
Cloroplastos/metabolismo , Internet , Bases del Conocimiento , Redes y Vías Metabólicas , Arabidopsis/metabolismo , Fracciones Subcelulares/metabolismo
5.
J Biol Chem ; 291(38): 20136-48, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27493208

RESUMEN

Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cobre/química , Proteínas de las Membranas de los Tilacoides/química , Tilacoides/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/genética
6.
Plant Cell ; 25(2): 545-57, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23424243

RESUMEN

Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Chlamydomonas reinhardtii/efectos de los fármacos , Fluorescencia , Luz , Complejos de Proteína Captadores de Luz/genética , Datos de Secuencia Molecular , Mutación , Nigericina/farmacología , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Mol Cell Proteomics ; 13(8): 2147-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24872594

RESUMEN

Photosynthesis has shaped atmospheric and ocean chemistries and probably changed the climate as well, as oxygen is released from water as part of the photosynthetic process. In photosynthetic eukaryotes, this process occurs in the chloroplast, an organelle containing the most abundant biological membrane, the thylakoids. The thylakoids of plants and some green algae are structurally inhomogeneous, consisting of two main domains: the grana, which are piles of membranes gathered by stacking forces, and the stroma-lamellae, which are unstacked thylakoids connecting the grana. The major photosynthetic complexes are unevenly distributed within these compartments because of steric and electrostatic constraints. Although proteomic analysis of thylakoids has been instrumental to define its protein components, no extensive proteomic study of subthylakoid localization of proteins in the BBY (grana) and the stroma-lamellae fractions has been achieved so far. To fill this gap, we performed a complete survey of the protein composition of these thylakoid subcompartments using thylakoid membrane fractionations. We employed semiquantitative proteomics coupled with a data analysis pipeline and manual annotation to differentiate genuine BBY and stroma-lamellae proteins from possible contaminants. About 300 thylakoid (or potentially thylakoid) proteins were shown to be enriched in either the BBY or the stroma-lamellae fractions. Overall, present findings corroborate previous observations obtained for photosynthetic proteins that used nonproteomic approaches. The originality of the present proteomic relies in the identification of photosynthetic proteins whose differential distribution in the thylakoid subcompartments might explain already observed phenomenon such as LHCII docking. Besides, from the present localization results we can suggest new molecular actors for photosynthesis-linked activities. For instance, most PsbP-like subunits being differently localized in stroma-lamellae, these proteins could be linked to the PSI-NDH complex in the context of cyclic electron flow around PSI. In addition, we could identify about a hundred new likely minor thylakoid (or chloroplast) proteins, some of them being potential regulators of the chloroplast physiology.


Asunto(s)
Arabidopsis/metabolismo , Espectrometría de Masas/métodos , Tilacoides/metabolismo , Fotosíntesis , Proteínas de Plantas/aislamiento & purificación , Proteómica/métodos
8.
J Exp Bot ; 65(6): 1529-40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24510941

RESUMEN

Copper is an essential micronutrient but it is also potentially toxic as copper ions can catalyse the production of free radicals, which result in various types of cell damage. Therefore, copper homeostasis in plant and animal cells must be tightly controlled. In the chloroplast, copper import is mediated by a chloroplast-envelope PIB-type ATPase, HMA6/PAA1. Copper may also be imported by HMA1, another chloroplast-envelope PIB-ATPase. To get more insights into the specific functional roles of HMA1 and PAA1 in copper homeostasis, this study analysed the phenotypes of plants affected in the expression of both HMA1 and PAA1 ATPases, as well as of plants overexpressing HMA1 in a paa1 mutant background. The results presented here provide new evidence associating HMA1 with copper homeostasis in the chloroplast. These data suggest that HMA1 and PAA1 behave as distinct pathways for copper import and targeting to the chloroplast. Finally, this work also provides evidence for an alternative route for copper import into the chloroplast mediated by an as-yet unidentified transporter that is neither HMA1 nor PAA1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cobre/metabolismo , Regulación de la Expresión Génica de las Plantas , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón de Cloroplastos/genética , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Homeostasis , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/fisiología
9.
STAR Protoc ; 4(3): 102528, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37632746

RESUMEN

Here, we present a detailed protocol to study the role of a human nuclear m6A RNA reader, YTHDC1, on chromatin-associated RNA targets. We describe steps for RNA extraction coupled to subnuclear fractionation to identify and study RNA-based regulations that take place in the chromatin-associated fraction. We then detail an RNA immunoprecipitation procedure adapted to identify chromatin-associated RNA targets. This protocol can be adapted to other human or mammalian chromatin-associated RNA binding proteins. For complete details on the use and execution of this protocol, please refer to Timcheva et al.1.


Asunto(s)
Adenina/análogos & derivados , Cromatina , ARN , Animales , Humanos , Cromatina/genética , ARN/genética , ARN Nuclear , ARN Nuclear Pequeño , Mamíferos
10.
J Biol Chem ; 286(42): 36188-97, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21878617

RESUMEN

Copper is an essential plant micronutrient playing key roles in cellular processes, among them photosynthesis. In Arabidopsis thaliana, copper delivery to chloroplasts, mainly studied by genetic approaches, is thought to involve two P(IB)-type ATPases: AtHMA1 and AtHMA6/PAA1. The lack of biochemical characterization of AtHMA1 and PAA1, and more generally of plant P(IB)-type ATPases, is due to the difficulty of getting high amounts of these membrane proteins in an active form, either from their native environment or after expression in heterologous systems. In this study, we report the first biochemical characterization of PAA1, a plant copper-transporting ATPase. PAA1 produced in Lactococcus lactis is active, forming an aspartyl phosphate intermediate in the presence of ATP and the adequate metal ion. PAA1 can also be phosphorylated using inorganic phosphate in the absence of transition metal. Both phosphorylation types allowed us to demonstrate that PAA1 is activated by monovalent copper ions (and to a lower extent by silver ions) with an apparent affinity in the micromolar range. In agreement with these biochemical data, we also demonstrate that when expressed in yeast, PAA1 induces increased sensitivities to copper and silver. These data provide the first enzymatic characterization of a P(IB-1)-type plant ATPase and clearly identify PAA1 as a high affinity Cu(I) transporter of the chloroplast envelope.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/enzimología , Cobre/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cationes Monovalentes/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/química , ATPasas de Translocación de Protón de Cloroplastos/genética , Cloroplastos/genética , Transporte Iónico/fisiología , Lactococcus lactis/enzimología , Lactococcus lactis/genética
11.
Mol Cell Proteomics ; 9(6): 1063-84, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20061580

RESUMEN

Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Bases de Datos de Proteínas , Membranas Intracelulares/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Western Blotting , Compartimento Celular , Fraccionamiento Celular , Espectrometría de Masas , Péptidos/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/metabolismo , Tilacoides/metabolismo
12.
Genes (Basel) ; 13(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35456403

RESUMEN

In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.


Asunto(s)
ARN Largo no Codificante , Animales , ADN , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Mamíferos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo
13.
Cell Rep ; 41(11): 111784, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516773

RESUMEN

Heat stress (HS) induces a cellular response leading to profound changes in gene expression. Here, we show that human YTHDC1, a reader of N6-methyladenosine (m6A) RNA modification, mostly associates to the chromatin fraction and that HS induces a redistribution of YTHDC1 across the genome, including to heat-induced heat shock protein (HSP) genes. YTHDC1 binding to m6A-modified HSP transcripts co-transcriptionally promotes expression of HSPs. In parallel, hundreds of the genes enriched in YTHDC1 during HS have their transcripts undergoing YTHDC1- and m6A-dependent intron retention. Later, YTHDC1 concentrates within nuclear stress bodies (nSBs) where it binds to m6A-modified SATIII non-coding RNAs, produced in an HSF1-dependent manner upon HS. These findings reveal that YTHDC1 plays a central role in a chromatin-associated m6A-based reprogramming of gene expression during HS. Furthermore, they support the model where the subsequent and temporary sequestration of YTHDC1 within nSBs calibrates the timing of this YTHDC1-dependent gene expression reprogramming.


Asunto(s)
Cromatina , Respuesta al Choque Térmico , Humanos , Respuesta al Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Expresión Génica , Factores de Empalme de ARN/metabolismo , Proteínas del Tejido Nervioso/metabolismo
14.
Plant Physiol Biochem ; 46(11): 951-5, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18707896

RESUMEN

The availability of the complete genome sequence of Arabidopsis thaliana and of large collections of insertion mutants paved the way for systematic studies of gene functions in this organism, thus requiring adapting biochemical and physiological tools to this model plant. For physiological analysis of photosynthesis, methods combining high level of chloroplast purity and preservation of the photosynthetic activity were missing. Here, we describe a rapid method (less than 1h) to obtain Percoll-purified and photosynthetically active chloroplasts from Arabidopsis leaves retaining almost 90% of the Vmax of photosynthesis measured in the starting leaves from plants grown under a light intensity of 150mumolphotonm(-2)s(-1) and 80% of their initial photosynthetic rate after 3h of storage.


Asunto(s)
Arabidopsis/química , Cloroplastos/fisiología , Fotosíntesis/fisiología , Western Blotting , Centrifugación Isopicnica , Electroforesis en Gel de Poliacrilamida , Oxígeno/metabolismo , Hojas de la Planta/química , Povidona , Dióxido de Silicio
15.
Methods Mol Biol ; 1696: 117-136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086400

RESUMEN

Chloroplasts are semiautonomous organelles found in plants and protists. They are surrounded by a double membrane system, or envelope. These envelope membranes contain machineries to import nuclear-encoded proteins, and transporters for ions or metabolites, but are also essential for a range of plastid-specific metabolisms. The inner membrane surrounds a stroma, which is the site of the carbon chemistry of photosynthesis. Chloroplasts also contain an internal membrane system, or thylakoids, where the light phase of photosynthesis occurs. The thylakoid membranes themselves have a bipartite structure, consisting of grana stacks interconnected by stroma lamellae. These thylakoid membranes however form a continuous network that encloses a single lumenal space. Chloroplast-encoded or targeted proteins are thus addressed to various sub-compartments that turn out to be flexible systems and whose main functions can be modulated by alterations in the relative levels of their components. This article describes procedures developed to recover highly purified chloroplast membrane fractions (i.e., envelope, crude thylakoid membranes, as well as the two main thylakoid subdomains, grana and stroma lamellae), starting from Percoll-purified Arabidopsis chloroplasts. Immunological markers are also listed that can be used to assess the purity of these fractions and reveal specific contaminations by other plastid membrane compartments. The methods described here are compatible with chloroplast proteome dynamic studies relying on targeted quantitative proteomic investigations.


Asunto(s)
Arabidopsis/citología , Fraccionamiento Celular/métodos , Cloroplastos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Membranas Intracelulares/metabolismo , Proteómica/métodos
16.
Mol Cell Biol ; 23(16): 5790-802, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897149

RESUMEN

HSP27 is an ATP-independent chaperone that confers protection against apoptosis through various mechanisms, including a direct interaction with cytochrome c. Here we show that HSP27 overexpression in various cell types enhances the degradation of ubiquitinated proteins by the 26S proteasome in response to stressful stimuli, such as etoposide or tumor necrosis factor alpha (TNF-alpha). We demonstrate that HSP27 binds to polyubiquitin chains and to the 26S proteasome in vitro and in vivo. The ubiquitin-proteasome pathway is involved in the activation of transcription factor NF-kappaB by degrading its main inhibitor, I-kappaBalpha. HSP27 overexpression increases NF-kappaB nuclear relocalization, DNA binding, and transcriptional activity induced by etoposide, TNF-alpha, and interleukin 1beta. HSP27 does not affect I-kappaBalpha phosphorylation but enhances the degradation of phosphorylated I-kappaBalpha by the proteasome. The interaction of HSP27 with the 26S proteasome is required to activate the proteasome and the degradation of phosphorylated I-kappaBalpha. A protein complex that includes HSP27, phosphorylated I-kappaBalpha, and the 26S proteasome is formed. Based on these observations, we propose that HSP27, under stress conditions, favors the degradation of ubiquitinated proteins, such as phosphorylated I-kappaBalpha. This novel function of HSP27 would account for its antiapoptotic properties through the enhancement of NF-kappaB activity.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteínas de Choque Térmico , Proteínas I-kappa B/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Neoplasias/fisiología , Péptido Hidrolasas/metabolismo , Animales , Apoptosis , Cromatografía en Gel , Grupo Citocromo c/metabolismo , Relación Dosis-Respuesta a Droga , Etopósido/farmacología , Genes Reporteros , Vectores Genéticos , Glutatión Transferasa/metabolismo , Proteínas de Choque Térmico HSP27 , Humanos , Immunoblotting , Interleucina-1/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilación , Pruebas de Precipitina , Complejo de la Endopetidasa Proteasomal , Ratas , Factores de Tiempo , Transcripción Genética , Transfección , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/metabolismo , Células U937 , Ubiquitina/metabolismo
17.
PLoS One ; 11(11): e0165666, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27802305

RESUMEN

Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Nucleótidos/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cobre/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Alineación de Secuencia
18.
Methods Mol Biol ; 1432: 79-101, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27485331

RESUMEN

Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.


Asunto(s)
Lactococcus lactis/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Vectores Genéticos , Lactococcus lactis/genética , Proteínas de la Membrana/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Methods Mol Biol ; 1258: 147-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25447863

RESUMEN

The study of most membrane proteins remains challenging due to their hydrophobicity and their low natural abundance in cells. Lactococcus lactis, a Gram-positive lactic bacterium, has been traditionally used in food fermentations and is nowadays widely used in biotechnology for large-scale production of heterologous proteins. This system has been successfully used for the production of prokaryotic and eukaryotic membrane proteins. The purpose of this chapter is to provide detailed protocols for (1) the expression of plant peripheral or intrinsic membrane proteins and then for (2) their solubilization, from Lactococcus membranes, for further purification steps and biochemical characterization.


Asunto(s)
Expresión Génica/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biotecnología/métodos
20.
Cell Calcium ; 58(1): 86-97, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25454594

RESUMEN

Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.


Asunto(s)
Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Transporte Iónico , Fotosíntesis , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA