Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 141(13): 5087-5091, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30888166

RESUMEN

Extended organometallic honeycomb alkynyl-silver networks have been synthesized on a noble metal surface under ultrahigh vacuum conditions via a gas-mediated surface reaction protocol. Specifically, the controlled exposure to molecular oxygen efficiently deprotonates terminal alkyne moieties of 1,3,5-tris(4-ethynylphenyl)benzene (Ext-TEB) precursors adsorbed on Ag(111). At Tsub = 200 K, this O2-mediated reaction pathway features high chemoselectivity without poisoning the surface. Through mild annealing to 375 K, long-range ordered alkynyl-silver networks incorporating substrate atoms evolve, featuring Ag- bis-acetylide motifs, high structural quality and a regular arrangement of nanopores with a van der Waals cavity of ≈8.3 nm2.

2.
Acc Chem Res ; 51(2): 365-375, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29420010

RESUMEN

Metallo-supramolecular engineering on surfaces provides a powerful strategy toward low-dimensional coordination architectures with prospects for several application fields. To date, most efforts have relied on transition metal centers, and only recently did we pioneer lanthanide-directed assembly. Coordination spheres and motifs with rare-earth elements generally display distinct properties and structural features. The size of the cations and shielding role of the 4f orbitals induces high coordination numbers, frequently entailing flexible coordination geometries. Following Pearson's hard and soft acid-base theory, lanthanide cations are hard Lewis acids and thus feature strong affinity for nitrile, terpyridine, and carboxylate donor moieties. The prevailing oxidation state is +3, although in certain compounds stable +2 or +4 cations occur. The chemistry of rare-earth elements is currently receiving widespread attention, as they are key ingredients for established and emerging 21st century science and technology with relevance for energy conversion, sensing, catalysis, magnetism, photonics, telecommunications, superconductivity, biomedicine, and quantum engineering. In this Account, we review recent advances toward the design of interfacial supramolecular nanoarchitectures incorporating lanthanide centers. We apply controlled ultrahigh vacuum conditions whereby atomistically clean substrates are prepared and exposed to ultrapure atomic and molecular beams of the chosen sublimable constituents. We focus on direct molecular-level investigations and in situ assembly operative close to equilibrium conditions. Our scanning probe microscopy techniques provide atomistic insights regarding the formation, stability, and manipulability of metal-organic compounds and networks. In order to gain deeper insights into the experimental findings, complementary computational analysis of bond characteristics, electronic properties, and coordination motifs has been performed for several case studies. Exemplary elements under consideration include cerium, gadolinium, dysprosium, and europium. By the use of ditopic molecular linkers equipped with carbonitrile moieties, adaptive coordination spheres are unveiled, yielding vertices with two- to sixfold symmetry. The respective coordination nodes underlie the expression of complex networks, such as semiregular Archimedean tessellations for cerium- or gadolinium-directed assemblies and random-tiling quasicrystalline characteristics for europium. Tunability via constituent stoichiometry regulation is revealed for bimolecular arrangements embedding europium centers, simultaneously connecting to carbonitrile and terypyridine ligands. Ditopic carboxylate linkers yield robust reticular networks based on a lateral coordination number of 8 for either gadolinium or dysprosium complexation, featuring a prevalent ionic nature of the coordination bond. Orthogonal insertion protocols give rise to d-f reticular architectures exploiting macrocyclic tetradentate cobalt complexation and peripheral carbonitrile-gadolinium coordination, respectively. Furthermore, lanthanides may afford metalation of adsorbed free-base tetrapyrrole species and can be engaged for interfacial synthesis of sandwich compounds, thus providing prospects for columnar design of coordination architectures. Finally, direct manipulation experiments achieved lateral displacement of single supramolecules and molecular rotation of sandwich or other molecular units. These findings evidence prospects for advancing molecular machinery components. The presented accomplishements herald further advancements in metallo-supramolecular design on surfaces, with versatile nanosystems and architectures emanating from the flexible coordination spheres. The embedding and systematic rationalization of lanthanide centers in tailored interfacial environments are keys to establishing relations between structure and physicochemical characteristics toward the generation of novel functionalities with technological significance.

3.
Small ; 14(51): e1804066, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370995

RESUMEN

Phosphorene is a new 2D material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct bandgap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) was investigated by molecular beam epitaxy and the obtained structure described as a blue phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a bandgap value equal to at least 0.8 eV, are synthesized on Au(111). The experimental investigations, coupled with density functional theory calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures are determined.

4.
Proc Natl Acad Sci U S A ; 112(44): 13484-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26460040

RESUMEN

Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

5.
Nature ; 466(7305): 470-3, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20651687

RESUMEN

Graphene nanoribbons-narrow and straight-edged stripes of graphene, or single-layer graphite-are predicted to exhibit electronic properties that make them attractive for the fabrication of nanoscale electronic devices. In particular, although the two-dimensional parent material graphene exhibits semimetallic behaviour, quantum confinement and edge effects should render all graphene nanoribbons with widths smaller than 10 nm semiconducting. But exploring the potential of graphene nanoribbons is hampered by their limited availability: although they have been made using chemical, sonochemical and lithographic methods as well as through the unzipping of carbon nanotubes, the reliable production of graphene nanoribbons smaller than 10 nm with chemical precision remains a significant challenge. Here we report a simple method for the production of atomically precise graphene nanoribbons of different topologies and widths, which uses surface-assisted coupling of molecular precursors into linear polyphenylenes and their subsequent cyclodehydrogenation. The topology, width and edge periphery of the graphene nanoribbon products are defined by the structure of the precursor monomers, which can be designed to give access to a wide range of different graphene nanoribbons. We expect that our bottom-up approach to the atomically precise fabrication of graphene nanoribbons will finally enable detailed experimental investigations of the properties of this exciting class of materials. It should even provide a route to graphene nanoribbon structures with engineered chemical and electronic properties, including the theoretically predicted intraribbon quantum dots, superlattice structures and magnetic devices based on specific graphene nanoribbon edge states.


Asunto(s)
Electrónica/instrumentación , Grafito/química , Nanotubos de Carbono/química , Hidrogenación , Modelos Moleculares , Conformación Molecular
6.
Proc Natl Acad Sci U S A ; 110(17): 6678-81, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23576764

RESUMEN

The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce-ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal-organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated.


Asunto(s)
Cerio/química , Elementos de la Serie de los Lantanoides/química , Modelos Químicos , Nanopartículas/química , Polifenoles/química , Microscopía de Túnel de Rastreo , Nitrilos/química , Propiedades de Superficie
7.
Phys Chem Chem Phys ; 17(41): 27615-29, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26426825

RESUMEN

The cinchona alkaloids cinchonidine and cinchonine belong to the most efficient chiral modifiers for the noble metal-catalyzed enantioselective hydrogenation of C=O and C=C bonds. Under reaction conditions these modifiers are coadsorbed on the noble metal surface with hydrogen. Using density functional theory, we studied the effect of coadsorbed hydrogen on the adsorption mode of cinchonidine and cinchonine on a Pt(111) surface at different hydrogen coverages. The theoretical study indicates that the presence of coadsorbed hydrogen affects both the adsorption geometry as well as the stability of the adsorbed cinchona alkaloids. At all hydrogen coverages the cinchona alkaloids are found to be adsorbed via anchoring of the quinoline moiety. In the absence of hydrogen as well as at low hydrogen coverage the quinoline moiety adsorbs nearly parallel to the surface, whereas at higher hydrogen coverage it becomes tilted. Higher hydrogen coverage as well as partial hydrogenation of the quinoline part of the cinchona alkaloid and hydrogen transfer to the C[double bond, length as m-dash]C double bond at 10, 11 position of the quinuclidine moiety destabilize the adsorbed cinchona alkaloid, whereas hydrogen transfer to the nitrogen atom of the quinoline and the quinuclidine moiety stabilizes the adsorbed molecule. The stability as well as the adsorption geometry of the cinchona alkaloids are affected by the coadsorbed hydrogen and are proposed to influence the efficiency of the enantiodifferentiating ability of the chirally modified platinum surface.


Asunto(s)
Alcaloides de Cinchona/química , Hidrógeno/química , Platino (Metal)/química , Teoría Cuántica , Adsorción , Catálisis , Hidrogenación , Estructura Molecular , Tamaño de la Partícula , Estereoisomerismo , Propiedades de Superficie
8.
J Chem Phys ; 143(10): 104502, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374045

RESUMEN

Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

9.
Phys Rev Lett ; 111(7): 077801, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23992083

RESUMEN

Density-driven phase transformations are a known phenomenon in liquids. Pressure-driven transitions from an open low-density to a higher-density close-packed structure were observed for a number of systems. Here, we show a less intuitive, inverse behavior. We investigated the electronic, atomic, and dynamic structures of liquid Rb along an isothermal line at 573 K, at 1.2-27.4 GPa, by means of ab initio molecular dynamics simulations and inelastic x-ray scattering experiments. The excellent agreement of the simulations with experimental data performed up to 6.6 GPa validates the overall approach. Above 12.5 GPa, the breakdown of the nearly-free-electron model drives a transition of the pure liquid metal towards a less metallic, denser liquid, whose first coordination shell is less compact. Our study unveils the interplay between electronic, structural, and dynamic degrees of freedom along this liquid-liquid phase transition. In view of its electronic nature, we believe that this behavior is general for the first group elements, thus shedding new light into the high-pressure properties of alkali metals.

10.
Nano Lett ; 12(8): 4077-83, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22765649

RESUMEN

The control of organic molecules, supramolecular complexes and donor-acceptor systems at interfaces is a key issue in the development of novel hybrid architectures for regulation of charge-carrier transport pathways in nanoelectronics or organic photovoltaics. However, at present little is known regarding the intricate features of stacked molecular nanostructures stabilized by noncovalent interactions. Here we explore at the single molecule level the geometry and electronic properties of model donor-acceptor dyads stabilized by van der Waals interactions on a single crystal Ag(111) support. Our combined scanning tunneling microscopy/spectroscopy (STM/STS) and first-principles computational modeling study reveals site-selective positioning of C(60) molecules on Ce(TPP)(2) porphyrin double-decker arrays with the fullerene centered on the π-system of the top bowl-shaped tetrapyrrole macrocycle. Three specific orientations of the C(60) cage in the van der Waals complex are identified that can be reversibly switched by STM manipulation protocols. Each configuration presents a distinct conductivity, which accounts for a tristable molecular switch and the tunability of the intradyad coupling. In addition, STS data evidence electronic decoupling of the hovering C(60) units from the metal substrate, a prerequisite for photophysical applications.

11.
Nano Lett ; 12(11): 5821-8, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23083003

RESUMEN

Ultrathin films of boron nitride (BN) have recently attracted considerable interest given their successful incorporation in graphene nanodevices and their use as spacer layers to electronically decouple and order functional adsorbates. Here, we introduce a BN monolayer grown by chemical vapor deposition of borazine on a single crystal Cu support, representing a model system for an electronically patterned but topographically smooth substrate. Scanning tunneling microscopy and spectroscopy experiments evidence a weak bonding of the single BN sheet to Cu, preserving the insulating character of bulk hexagonal boron nitride, combined with a periodic lateral variation of the local work function and the surface potential. Complementary density functional theory calculations reveal a varying registry of the BN relative to the Cu lattice as origin of this electronic Moiré-like superstructure.

12.
Nanoscale ; 15(28): 11972-11980, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37395420

RESUMEN

Defect engineering in two-dimensional materials expands the realm of their applications in catalysis, nanoelectronics, sensing, and beyond. As limited tools are available to explore nanoscale functional properties in non-vacuum environments, theoretical modeling provides some invaluable insight into the effect of local deformations to deepen the understanding of experimental signals acquired by nanoscale chemical imaging. We demonstrate the controlled creation of nanoscale strained defects in hexagonal boron nitride (h-BN) using atomic force microscopy and infrared (IR) light under an inert environment. Nanoscale IR spectroscopy reveals the broadening of the in-plane phonon (E1u) mode of h-BN during defect formation while density functional theory-based calculations and molecular dynamics provide quantification of the tensile and compressive strain in the deformation.

13.
J Comput Chem ; 33(7): 757-66, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22253041

RESUMEN

First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots.

14.
Chemphyschem ; 13(7): 1845-53, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22383333

RESUMEN

We present a comprehensive density functional study, using the Perdew-Burke-Ernzerhof (PBE) functional, to elucidate the effect of including or neglecting the dispersion correction on the structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate. We have investigated the structure of the liquid phase and observed that specific interactions between the anions and cations of the ionic liquid were not accurately represented if the dispersion was neglected. The dynamics of the system is more accurately described if the dispersion correction is taken into account and its omission also leads to an incorrect representation of the hydrogen-bonding dynamics. Finally, the power spectrum is predicted and in good agreement with experimental results. Thus, we conclude that it is possible to represent the structure and dynamics of systems containing ionic liquids accurately using ab initio molecular dynamics and a correction for dispersion.

15.
Sci Rep ; 12(1): 2714, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177727

RESUMEN

Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear. These phenomena were first observed seventy years ago. However, the source of these emission patterns has not yet been identified owing to the limited experimental information about molecular configurations on a tip. Here, we used fullerene molecules and characterized the molecule-covered tip by an FEM. In addition to the experiments, simulations were performed to obtain optimized molecular configurations on a tip. Both results indicate that the molecules, the source of the peculiar emission patterns, appear on a molecule layer formed on the tip under strong DC electric fields. Furthermore, the simulations revealed that these molecules are mostly isolated single molecules forming single-molecule-terminated protrusions. Upon the excellent agreements in both results, we concluded that each emission pattern originates from a single molecule. Our work should pave the way to revive old-fashioned electron microscopy as a powerful tool for investigating a single molecule.

16.
J Chem Phys ; 135(15): 154503, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22029320

RESUMEN

Density functional theory (DFT) within the generalized gradient approximation (GGA) is known to poorly reproduce the experimental properties of liquid water. The poor description of the dispersion forces in the exchange correlation functionals is one of the possible causes. Recent studies have demonstrated an improvement in the simulated properties when they are taken into account. We present here a study of the effects on liquid water of the recently proposed semi-empirical correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The difference between standard and corrected DFT-GGA simulations is rationalized with a detailed analysis upon modifying an accurate parameterised potential. This allows an estimate of the typical range of dispersion forces in water. We also show that the structure and diffusivity of ambient-like liquid water are sensitive to the fifth neighbor position, thus highlighting the key role played by this neighbor. Our study is extended to water at supercritical conditions, where experimental and theoretical results are much more scarce. We show that the semi-empirical correction by Grimme et al. improves significantly, although somewhat counter-intuitively, both the structural and the dynamical description of supercritical water.


Asunto(s)
Agua/química , Enlace de Hidrógeno , Modelos Químicos , Simulación de Dinámica Molecular , Teoría Cuántica , Especies Reactivas de Oxígeno/química , Termodinámica
17.
J Am Chem Soc ; 132(10): 3440-51, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20178362

RESUMEN

We show that Clar's theory of the aromatic sextet is a simple and powerful tool to predict the stability, the pi-electron distribution, the geometry, and the electronic/magnetic structure of graphene nanoribbons with different hydrogen edge terminations. We use density functional theory to obtain the equilibrium atomic positions, simulated scanning tunneling microscopy (STM) images, edge energies, band gaps, and edge-induced strains of graphene ribbons that we analyze in terms of Clar formulas. On the basis of their Clar representation, we propose a classification scheme for graphene ribbons that groups configurations with similar bond length alternations, STM patterns, and Raman spectra. Our simulations show how STM images and Raman spectra can be used to identify the type of edge termination.

18.
Nat Mater ; 8(3): 189-93, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19182787

RESUMEN

Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical or quantum behaviour. Individual atoms, however, are difficult to arrange in regular patterns. Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment. Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5 nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.

20.
J Phys Chem B ; 113(4): 1127-31, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19123911

RESUMEN

We present ab initio molecular dynamics studies on liquid water using density functional theory in conjunction with either dispersion-corrected atom-centered potentials or empirical van der Waals corrections. Our results show that improving the description of van der Waals interactions in DFT-GGA leads to a softening of liquid water's structure with higher mobility. The results obtained with dispersion-corrected atom-centered potentials are especially encouraging. In particular, the radial distribution functions are in better agreement with experiment, and the self-diffusion coefficient increases by more than three-fold compared with the one predicted by the BLYP functional. This work demonstrates that van der Waals interactions are essential in fine-tuning both structural and dynamical properties of liquid water.


Asunto(s)
Agua/química , Difusión , Hidrógeno/química , Enlace de Hidrógeno , Cinética , Oxígeno/química , Especies Reactivas de Oxígeno/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA