Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 608(7922): 421-428, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922508

RESUMEN

Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1-6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.


Asunto(s)
Tejido Adiposo Pardo , Frío , Metabolismo Energético , Neoplasias , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Glucemia/metabolismo , Terapia Combinada , Glucólisis , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/prevención & control , Neoplasias/terapia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevención & control , Neoplasias Pancreáticas/terapia , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(29): e2303740120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428914

RESUMEN

Defining reliable surrogate markers and overcoming drug resistance are the most challenging issues for improving therapeutic outcomes of antiangiogenic drugs (AADs) in cancer patients. At the time of this writing, no biomarkers are clinically available to predict AAD therapeutic benefits and drug resistance. Here, we uncovered a unique mechanism of AAD resistance in epithelial carcinomas with KRAS mutations that targeted angiopoietin 2 (ANG2) to circumvent antivascular endothelial growth factor (anti-VEGF) responses. Mechanistically, KRAS mutations up-regulated the FOXC2 transcription factor that directly elevated ANG2 expression at the transcriptional level. ANG2 bestowed anti-VEGF resistance as an alternative pathway to augment VEGF-independent tumor angiogenesis. Most colorectal and pancreatic cancers with KRAS mutations were intrinsically resistant to monotherapies of anti-VEGF or anti-ANG2 drugs. However, combination therapy with anti-VEGF and anti-ANG2 drugs produced synergistic and potent anticancer effects in KRAS-mutated cancers. Together, these data demonstrate that KRAS mutations in tumors serve as a predictive marker for anti-VEGF resistance and are susceptible to combination therapy with anti-VEGF and anti-ANG2 drugs.


Asunto(s)
Carcinoma , Factores de Crecimiento Endotelial , Humanos , Factores de Crecimiento Endotelial/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiopoyetina 1/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(40): e2203307119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161914

RESUMEN

Brown adipose tissue (BAT) is a highly specialized adipose tissue in its immobile location and size during the entire adulthood. In response to cold exposure and other ß3-adrenoreceptor stimuli, BAT commits energy consumption by nonshivering thermogenesis (NST). However, the molecular machinery in controlling the BAT mass in adults is unknown. Here, we show our surprising findings that the BAT mass and functions can be manipulated in adult animals by controlling BAT adipocyte differentiation in vivo. Platelet-derived growth factor receptor α (PDGFα) expressed in BAT progenitor cells served a signaling function to avert adipose progenitor differentiation. Genetic and pharmacological loss-of-function of PDGFRα eliminated the differentiation barrier and permitted progenitor cell differentiation to mature and functional BAT adipocytes. Consequently, an enlarged BAT mass (megaBAT) was created by PDGFRα inhibition owing to increases of brown adipocyte numbers. Under cold exposure, a microRNA-485 (miR-485) was identified as a master suppressor of the PDGFRα signaling, and delivery of miR-485 also produced megaBAT in adult animals. Noticeably, megaBAT markedly improved global metabolism, insulin sensitivity, high-fat-diet (HFD)-induced obesity, and diabetes by enhancing NST. Together, our findings demonstrate that the adult BAT mass can be increased by blocking the previously unprecedented inhibitory signaling for BAT progenitor cell differentiation. Thus, blocking the PDGFRα for the generation of megaBAT provides an attractive strategy for treating obesity and type 2 diabetes mellitus (T2DM).


Asunto(s)
Adipocitos Marrones , Adipocitos , Adipogénesis , Tejido Adiposo Pardo , MicroARNs , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Adipocitos/citología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/terapia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Termogénesis/genética
4.
Neurochem Res ; 49(7): 1838-1850, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727984

RESUMEN

Menaquinone-4 (MK-4) is an isoform of vitamin K2 that has been shown to exert various biological actions besides its functions in blood coagulation and bone metabolism. Here we examined the effect of MK-4 on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of 200 mg/kg MK-4 starting from 3 h after induction of ICH by intrastriatal collagenase injection significantly ameliorated neurological deficits. Unexpectedly, MK-4 produced no significant effects on various histopathological parameters, including the decrease of remaining neurons and the increase of infiltrating neutrophils within the hematoma, the increased accumulation of activated microglia/macrophages and astrocytes around the hematoma, as well as the injury volume and brain swelling by hematoma formation. In addition, ICH-induced increases in nitrosative/oxidative stress reflected by changes in the immunoreactivities against nitrotyrosine and heme oxygenase-1 as well as the contents of malondialdehyde and glutathione were not significantly affected by MK-4. In contrast, MK-4 alleviated axon tract injury in the internal capsule as revealed by neurofilament-H immunofluorescence. Enhanced preservation of the corticospinal tract by MK-4 was also confirmed by retrograde labeling of neurons in the primary motor cortex innervating the spinal cord. These results suggest that MK-4 produces therapeutic effect on ICH by protecting structural integrity of the corticospinal tract.


Asunto(s)
Hemorragia Cerebral , Tractos Piramidales , Vitamina K 2 , Animales , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Masculino , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología , Vitamina K 2/uso terapéutico , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/tratamiento farmacológico
5.
Langmuir ; 40(21): 11297-11306, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38755745

RESUMEN

The density of the side chain introduced to a polymer main chain greatly influences the properties and functions of the polymer. This work first reports on the packing structure and properties at an interface of a poly(substituted methylene) where an azobenzene side chain is introduced at every carbon atom in the main chain (C1PAz). The structure and properties are compared with those of a conventional vinyl polymer [poly(methacrylate)] possessing an identical side-chain structure (C2PAz). The packing structure in the bulk state analyzed by X-ray measurements revealed that C1PAz adopts a highly ordered rectangular unit cell structure, whereas C2PAz shows a less ordered lamellar one. Langmuir film balance experiments indicated that both polymers with the trans-azobenzene give essentially the identical 2D side-chain occupying area on water, which agrees well with the smectic B (hexatic packing) model based on the X-ray data. Upon transfer onto a solid substrate, only C1PAz shows a conformational transformation to a spread bilayer-type layer, most probably due to conformational frustration stemming from the crowding of the side chains. This study proposes new insights into the effects of side-chain density on the self-assembly and photoreaction of azobenzene-containing polymers, which are expected to expand the possibilities of polymer design for various applications.

6.
J Pharmacol Sci ; 154(2): 47-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246727

RESUMEN

Goreisan is a Kampo medicine used to treat headaches associated with climate change. Here, by using an implantable complementary metal-oxide-semiconductor (CMOS) device, we evaluated the effects of Goreisan and loxoprofen on cerebral blood flow (CBF) dynamics associated with barometric pressure fluctuations in freely moving mice. In the vehicle group, decreasing barometric pressure increased CBF that was prevented by Goreisan and loxoprofen. Notably, Goreisan, but not loxoprofen, reduced CBF after returning to atmospheric pressure. These results indicate that, unlike the mechanism of action of antipyretic analgesics, Goreisan normalizes CBF abnormalities associated with barometric pressure fluctuations by actively reducing CBF increase.


Asunto(s)
Presión Atmosférica , Circulación Cerebrovascular , Medicamentos Herbarios Chinos , Fenilpropionatos , Femenino , Animales , Ratones , Ratones Endogámicos C57BL
7.
Sci Technol Adv Mater ; 25(1): 2302795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361532

RESUMEN

In recent times, there has been a significant surge in research interest surrounding thermo-responsive water-soluble polyacrylamides, primarily due to their intriguing capability to undergo significant solubility changes in water. These polymers exhibit the remarkable ability to shift from a soluble to an insoluble state in response to temperature variations. The capacity of these polymers to dynamically respond to temperature changes opens up exciting avenues for designing smart materials with tunable properties, amplifying their utility across a spectrum of scientific and technological applications. Researchers have been particularly captivated by the potential applications of thermo-responsive water-soluble polyacrylamides in diverse fields such as drug delivery, gene carriers, tissue engineering, sensors, catalysis, and chromatography separation. This study reports the construction and functionalization of polymer gels consisting of a polymer network of polyacrylamide derivatives with nano-sized structural units. Specifically, thermo-responsive polymer gels were synthesized by combining well-defined star-shaped polymers composed of polyacrylamide derivatives with a multifunctional initiator and linking method through a self-accelerating click reaction. The polymerization system employed a highly living approach, resulting in polymer chains characterized by narrow molecular weight distributions. The method's high functionality facilitated the synthesis of a temperature-responsive block copolymer gel composed of N-isopropyl acrylamide (NIPA) and N-ethyl acrylamide (NEAA). The resulting polymer gel, comprising star-shaped block copolymers of NIPA and NEAA, showcases smooth volume changes with temperature jumps.


This approach's versatility was showcased by creating networks using widely-used vinyl polymers. It can generate various functional and nearly ideal gels and elastomers, allowing for investigating fundamental aspects of polymer networks.

8.
Langmuir ; 39(1): 619-626, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36545757

RESUMEN

The orientation of liquid crystal (LC) molecules is significantly governed by solid interfaces and free surfaces, and a variety of functional materials have been developed using these properties. Although LC materials are already in industrial use, particularly for LC display panels, various studies have been conducted in recent years to better grasp the interface behavior of LC molecules. In this work, we succeeded in in situ observations of induction of higher ordered LC phases at the interface between a side-chain LC azobenzene polymer film with a thickness of ∼400 nm and a low-molecular-mass nematic LC, 4'-pentyl-4-cyanobiphenyl of 35 µm thickness, using small-angle X-ray scattering measurements and polarized optical microscopy. It is revealed that the two different mesogens cooperatively form hybrid higher ordered smectic LC phases probably through weak electron transfer immediately after interfacial contact. The induction process consists of three stages in terms of dynamic structure evolutions. Upon UV irradiation, the hybrid smectic LC structure diminished. This study provides new insights into the behavior of LC molecules near the alignment film on the solid substrate.

9.
Langmuir ; 39(49): 17844-17852, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033265

RESUMEN

Optically transparent and colored elastomers with high toughness are expected to play an important role in the construction of advanced medical materials, wearable displays, and soft robots. In this study, we found that composite elastomers consisting of amorphous SiO2 particles homogeneously dispersed in high concentrations within a biocompatible acrylic polymer network exhibit optical transparency and bright structural colors. In the composite elastomers, the system in which the SiO2 particles form a colloidal amorphous array hardly changes its structural color hue despite deformation due to elongation. Furthermore, the composite elastomer of the SiO2 particles with the acrylic polymer network also results in high mechanical toughness. In summary, we have shown that the elastomer that exhibits fade-resistant structural coloration formed from safe materials can combine stable coloration and mechanical strength independent of their shape. This is expected to have new potential in future technologies to support our daily life.

10.
J Pharmacol Sci ; 152(3): 182-192, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257946

RESUMEN

Missense mutations of ubiquilin 2 (UBQLN2) have been identified to cause X-linked amyotrophic lateral sclerosis (ALS). Proteasome-mediated protein degradation is reported to be impaired by ALS-associated mutations of UBQLN2. However, it remains unknown how these mutations affect autophagy-lysosome protein degradation, which consists of macroautophagy (MA), microautophagy (mA), and chaperone-mediated autophagy (CMA). Using a CMA/mA fluorescence reporter we found that overexpression of wild-type UBQLN2 impairs CMA. Conversely, knockdown of endogenous UBQLN2 increases CMA activity, suggesting that normally UBQLN2 negatively regulates CMA. ALS-associated mutant forms of UBQLN2 exacerbate this impairment of CMA. Using cells stably transfected with wild-type or ALS-associated mutant UBQLN2, we further determined that wild-type UBQLN2 increased the ratio of LAMP2A (a CMA-related protein) to LAMP1 (a lysosomal protein). This could represent a compensatory reaction to the impairment of CMA by wild-type UBQLN2. However, ALS-associated mutant UBQLN2 failed to show this compensation, exacerbating the impairment of CMA by mutant UBQLN2. We further demonstrated that ALS-associated mutant forms of UBQLN2 also impair MA, but wild-type UBQLN2 does not. These results support the view that ALS-associated mutant forms of UBQLN2 impair both CMA and MA which may contribute to the neurodegeneration observed in patients with UBQLN2-mediated ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Mutación , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción/metabolismo , Lisosomas/metabolismo , Lisosomas/patología
11.
J Pharmacol Sci ; 153(4): 208-214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973218

RESUMEN

Natural compounds with sulfur moiety produce various biological actions that may be beneficial for the therapies of several devastative disorders of the central nervous system. Here we investigated potential therapeutic effect of allicin, an organosulfur compound derived from garlic, in a mouse model of intracerebral hemorrhage (ICH) based on intrastriatal collagenase injection. Daily intraperitoneal administration of allicin (50 mg/kg) from 3 h after induction of ICH afforded neuroprotective effects, as evidenced by the increase of surviving neurons in the hematoma, reduction of axonal transport impairment, and prevention of axon tract injury. In addition, allicin inhibited accumulation of activated microglia/macrophages around the hematoma and infiltration of neutrophils within the hematoma. Allicin also suppressed ICH-induced mRNA upregulation of pro-inflammatory factors such as interleukin 6 and C-X-C motif ligand 2 in the brain, suggesting its anti-inflammatory effect. Moreover, ICH-induced increase of malondialdehyde as well as decrease of total glutathione in the brain was attenuated by allicin. Finally, allicin-treated mice showed better recovery of sensorimotor functions after ICH than vehicle-treated mice. These results indicate that allicin produces a therapeutic effect on ICH pathology via alleviation of neuronal damage, inflammatory responses and oxidative stress in the brain.


Asunto(s)
Encéfalo , Hemorragia Cerebral , Ratones , Animales , Hemorragia Cerebral/tratamiento farmacológico , Encéfalo/patología , Microglía/patología , Hematoma/patología
12.
Macromol Rapid Commun ; 44(5): e2200761, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36367366

RESUMEN

Two liquid crystalline polymers containing an azobenzene or cyanobiphenyl mesogenic side chain that adopt smectic A phases are mechanically mixed at 1:1 mesogen molar ratio at an isotropic phase temperature and then cooled. The resultant binary polymer mixture behaves like a single component as revealed by polarized microscopy observation and differential scanning calorimetry, indicating that the binary mixture forms a fully compatible polymer blend. Moreover, the simple polymer blend unexpectedly leads to a higher-ordered smectic E phase where a herringbone structure is formed with restricted mesogen axis rotation. These results suggest a specific intermolecular interaction between the two mesogens, thereby inducing unusual compatibilized polymer blends and the most ordered liquid crystal (LC) phase.


Asunto(s)
Cristales Líquidos , Polímeros , Polímeros/química , Transición de Fase , Temperatura , Cristales Líquidos/química , Frío
13.
Soft Matter ; 18(28): 5204-5217, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35766519

RESUMEN

Thermoresponsive polymer gels can be applied as culture beds for cell sheets, drug release agents for drug delivery, and sensing materials. In general, the shrinkage behavior of thermoresponsive polymer gels is complex, and they may require much longer times than swelling to reach thermodynamically stable shrinkage states. This slow volume change during shrinkage is often a drawback in using reversible changes in polymer gel volumes with changing temperature for applications such as those described above, and attempts have been made to improve the shrinkage rates of polymer gels. However, using the conventional method results in a low density of the three-dimensional crosslinked network comprising the polymer gel, which weakens the mechanical properties of the polymer gel. In this study, we investigated the effects of monomer arrangement and composition for star-shaped polymers composed of N-isopropylacrylamide and N,N-dimethylacrylamide on the shrinkage behavior of gels comprising star-shaped polymers with the aim of increasing their shrinkage rates without reducing the network densities of the temperature-responsive polymer gels. Based on selective network decomposition by methanolysis and SAXS measurements, the network structures of the obtained spherical gels were found to be more homogeneous than those of polymer gels obtained by conventional free radical polymerization. These gels exhibited reversible volume changes in water, with low-temperature swelling and high-temperature shrinkage. The rates of volume changes from a high temperature shrunken state to a low temperature swollen one were almost the same for all gels. However, the rates of volume changes from low-temperature swollen states to high-temperature shrunken states varied greatly depending on the compositions and sequences of monomers that made up the polymer networks. We confirmed that the introduction of more than 20% DMA as a block copolymer in the network suppressed phase separation and formation of a skin layer and the water inside the polymer gel drained smoothly to the outside, which resulted in an increase in the shrinkage speed.

14.
Bioorg Med Chem Lett ; 64: 128664, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35272008

RESUMEN

We have been conducting exploratory research to develop human immunodeficiency virus type-1 (HIV-1) integrase-LEDGF/p75 allosteric inhibitors (INLAIs). Here, we report on a newly designed compound with a tricyclic scaffold that shows promise as an inhibitor. Various scaffolds were synthesized by intramolecular direct arylation reaction to fix the position of a lipophilic side chain required for antiviral activity. Among these, the compound having an N-mesyl dihydrophenanthridine ring showed the best antiviral activity. Compound 42i, prepared by side chain optimization of the C-4 and C-6 positions, exhibited high antiviral activity against wild-type (WT) and the T174I mutant (EC50 (WT) = 4.6 nM, EC50 (T174I) = 83 nM) with a good PK profile. Based on co-crystal structural analysis of compound 42i and WT HIV-1 IN CCD, we discuss the interaction important for high antiviral activity.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , Integrasa de VIH/química , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular
15.
Biol Pharm Bull ; 45(11): 1699-1705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328505

RESUMEN

Hydrogen sulfide and polysulfides are increasingly recognized as bioactive signaling molecules to produce various actions and regulate (patho)physiological processes. Here we examined the effects of sodium sulfide (Na2S) and sodium trisulfide (Na2S3) on an experimental model of intracerebral hemorrhage (ICH) in mice. Na2S or Na2S3 (25 µmol/kg, intraperitoneally (i.p.)) was administered 30 min before ICH induction by intrastriatal injection of collagenase. We found that Na2S significantly ameliorated sensorimotor functions of mice after ICH. Histopathological examinations revealed that Na2S inhibited neuron loss in the striatum, prevented axon degeneration in the internal capsule, and ameliorated axonal transport dysfunction in the striatum and the cerebral cortex where the edge of hematoma was located. Although Na2S did not suppress accumulation of activated microglia/macrophages in the peri-hematoma region, it suppressed ICH-induced upregulation of inflammatory mediators such as C-X-C motif ligand 2. On the other hand, Na2S3 did not ameliorate ICH-induced sensorimotor dysfunction. Although the effect of Na2S3 on several parameters such as axon degeneration and axonal transport dysfunction was comparable to that of Na2S, Na2S3 did not significantly inhibit neuron loss and upregulation of inflammatory mediators. These results suggest that the regulation of multiple pathological events is involved in the effect of Na2S leading to amelioration of neurological symptoms associated with ICH.


Asunto(s)
Hemorragia Cerebral , Microglía , Ratones , Animales , Hemorragia Cerebral/tratamiento farmacológico , Modelos Teóricos , Hematoma/complicaciones , Mediadores de Inflamación/farmacología
16.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35055154

RESUMEN

Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.


Asunto(s)
Compuestos Azo/química , Colorantes/química , Solventes/química , Cristalografía por Rayos X , Luz , Modelos Moleculares , Estructura Molecular , Nanoestructuras
17.
Neuropathol Appl Neurobiol ; 47(2): 198-209, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32722888

RESUMEN

AIMS: Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS: We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS: GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS: CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.


Asunto(s)
Ataxia Cerebelosa/patología , Cerebelo/patología , Autofagia Mediada por Chaperones/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Ataxia Cerebelosa/metabolismo , Cerebelo/metabolismo , Ratones Endogámicos ICR , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Fenotipo
18.
Bioorg Med Chem Lett ; 33: 127742, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316407

RESUMEN

We have discovered HIV-1 novel integrase-LEDGF/p75 allosteric inhibitors (INLAIs) based on a pyridine scaffold forming an intramolecular hydrogen bond. Scaffolds containing a pyridine moiety have been studied extensively and we have already reported that substituents extending from the C1 position contributed to the antiviral potency. In this study, we designed a new pyridine scaffold 2 with a substituent at the C1 position. Interestingly, during attempts at optimization, we found that the direction of the C1 substituents with an intramolecular hydrogen bond contributed to the antiviral potency. Compound 34f exhibited better antiviral potency against WT and the T174I mutant (EC50 (WT) = 6.6 nM, EC50 (T174I) = 270 nM) than BI 224436 (EC50 (WT) = 22 nM, EC50 (T174I) > 5000 nM).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antivirales/farmacología , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Piridinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/química , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
19.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466390

RESUMEN

Niemann-Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-ß-CD in Npc1 gene-deficient (Npc1-/-) mice. Intracerebroventricular HP-ß-CD inhibited cerebellar Purkinje cell damage in Npc1-/- mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1-/- mice. Repeated doses of intracerebroventricular HP-ß-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1-/- mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-ß-CD treatment.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Cerebelo/efectos de los fármacos , Proteínas del Ojo/metabolismo , Hígado/efectos de los fármacos , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Biomarcadores/metabolismo , Cerebelo/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/metabolismo , Infusiones Intraventriculares , Hígado/metabolismo , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo
20.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299568

RESUMEN

The creation of fluorescent micro- and macrostructures with the desired morphologies and sizes is of considerable importance due to their intrinsic functions and performance. However, it is still challenging to modulate the morphology of fluorescent organic materials and to obtain insight into the factors governing the morphological evolution. We present a facile bottom-up approach to constructing diverse micro- and macrostructures by connecting fluorescent spherical particles (SPs), which are generated via the spherical assembly of photoisomerizable azobenzene-based propeller-shaped chromophores, only with the help of commercially available polyethylene glycol (PEG) derivatives. Without any extra additives, solvent evaporation created a slow morphological evolution of the SPs from short linear chains (with a length of a few micrometers) to larger, interconnected networks and sheet structures (ranging from tens to >100 µm) at the air-liquid interface. Their morphologies and sizes were significantly dependent on the fraction and length of the PEG. Our experimental results suggest that noncovalent interactions (such as hydrophobic forces and hydrogen bonding) between the amphiphilic PEG chains and the relatively hydrophobic SPs were weak in aqueous solutions, but play a crucial role in creating the morphologically diverse micro- and macrostructures. Moreover, short-term irradiation with visible light caused fast morphological crumpling and fluorescence switching of the obtained structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA