Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(12): 2059-2076.e6, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327776

RESUMEN

The heme-regulated kinase HRI is activated under heme/iron deficient conditions; however, the underlying molecular mechanism is incompletely understood. Here, we show that iron-deficiency-induced HRI activation requires the mitochondrial protein DELE1. Notably, mitochondrial import of DELE1 and its subsequent protein stability are regulated by iron availability. Under steady-state conditions, DELE1 is degraded by the mitochondrial matrix-resident protease LONP1 soon after mitochondrial import. Upon iron chelation, DELE1 import is arrested, thereby stabilizing DELE1 on the mitochondrial surface to activate the HRI-mediated integrated stress response (ISR). Ablation of this DELE1-HRI-ISR pathway in an erythroid cell model enhances cell death under iron-limited conditions, suggesting a cell-protective role for this pathway in iron-demanding cell lineages. Our findings highlight mitochondrial import regulation of DELE1 as the core component of a previously unrecognized mitochondrial iron responsive pathway that elicits stress signaling following perturbation of iron homeostasis.


Asunto(s)
Hierro , eIF-2 Quinasa , Hierro/metabolismo , eIF-2 Quinasa/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Células Eritroides/metabolismo , Hemo/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Mol Cell ; 73(5): 1028-1043.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733118

RESUMEN

Mutations in PTEN-induced kinase 1 (PINK1) can cause recessive early-onset Parkinson's disease (PD). Import arrest results in PINK1 kinase activation specifically on damaged mitochondria, triggering Parkin-mediated mitophagy. Here, we show that PINK1 import is less dependent on Tim23 than on mitochondrial membrane potential (ΔΨm). We identified a negatively charged amino acid cluster motif that is evolutionarily conserved just C-terminal to the PINK1 transmembrane. PINK1 that fails to accumulate at the outer mitochondrial membrane, either by mutagenesis of this negatively charged motif or by deletion of Tom7, is imported into depolarized mitochondria and cleaved by the OMA1 protease. Some PD patient mutations also are defective in import arrest and are rescued by the suppression of OMA1, providing a new potential druggable target for PD. These results suggest that ΔΨm loss-dependent PINK1 import arrest does not result solely from Tim23 inactivation but also through an actively regulated "tug of war" between Tom7 and OMA1.


Asunto(s)
Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Antiparkinsonianos/farmacología , Transporte Biológico , Diseño de Fármacos , Activación Enzimática , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
PLoS Biol ; 18(11): e3000981, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33253182

RESUMEN

The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.


Asunto(s)
Acetilcoenzima A/biosíntesis , Nucléolo Celular/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetatos/metabolismo , Acetilación , Línea Celular , Nucléolo Celular/ultraestructura , Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Histona Desacetilasas/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Hum Mol Genet ; 29(9): 1547-1567, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32338760

RESUMEN

Dominant mutations in the mitochondrial paralogs coiled-helix-coiled-helix (CHCHD) domain 2 (C2) and CHCHD10 (C10) were recently identified as causing Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia/myopathy, respectively. The mechanism by which they disrupt mitochondrial cristae, however, has been uncertain. Using the first C2/C10 double knockout (DKO) mice, we report that C10 pathogenesis and the normal function of C2/C10 are intimately linked. Similar to patients with C10 mutations, we found that C2/C10 DKO mice have disrupted mitochondrial cristae, because of cleavage of the mitochondrial-shaping protein long form of OPA1 (L-OPA1) by the stress-induced peptidase OMA1. OMA1 was found to be activated similarly in affected tissues of mutant C10 knock-in (KI) mice, demonstrating that L-OPA1 cleavage is a novel mechanism for cristae abnormalities because of both C10 mutation and C2/C10 loss. Using OMA1 activation as a functional assay, we found that C2 and C10 are partially functionally redundant, and some but not all disease-causing mutations have retained activity. Finally, C2/C10 DKO mice partially phenocopied mutant C10 KI mice with the development of cardiomyopathy and activation of the integrated mitochondrial integrated stress response in affected tissues, tying mutant C10 pathogenesis to C2/C10 function.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Demencia Frontotemporal/genética , Metaloproteasas/genética , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/genética , Factores de Transcripción/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/patología , Predisposición Genética a la Enfermedad , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Enfermedad de Parkinson/patología
5.
Exp Cell Res ; 400(1): 112515, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33582095

RESUMEN

Metabolite fluctuations following nutrient metabolism or environmental stresses impact various intracellular signaling networks and stress responses to maintain cellular and organismal homeostasis. It has been shown that subcellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, lysosomes and mitochondria serve as crucial hubs linking alterations in metabolite levels to cellular responses. This role is coordinated by molecular machineries that are associated with the lipid membranes of organelles, which sense the fluctuations in specific metabolites and activate the appropriate signaling and effector molecules. Moreover, recent studies have demonstrated that membraneless organelles, such as the nucleolus and stress granules, are involved in the metabolic stress response. Metabolite-induced post-translational modifications appear to play an important role in this process. Here, we review the molecular mechanisms of metabolite sensing and metabolite-mediated stress responses through membrane-bound and membraneless organelles in mammalian cells.


Asunto(s)
Núcleo Celular/patología , Retículo Endoplásmico/patología , Aparato de Golgi/patología , Homeostasis , Lisosomas/patología , Mitocondrias/patología , Estrés Fisiológico , Animales , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo
6.
J Biol Chem ; 295(17): 5588-5601, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144202

RESUMEN

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.


Asunto(s)
Adipocitos Marrones/metabolismo , Regulación hacia Abajo , Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteína Desacopladora 1/genética , Animales , Células Cultivadas , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Fosfoproteínas Fosfatasas/genética , Proteína Desacopladora 1/metabolismo
7.
Asia Pac J Clin Nutr ; 30(2): 199-205, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34191421

RESUMEN

BACKGROUND AND OBJECTIVES: It is important to evaluate the swallowing function of patients with acute cerebral infarction. The effects of nutritional intervention after an early assessment by a flexible endoscopic evaluation of swallowing (FEES) were evaluated. METHODS AND STUDY DESIGN: This retrospective study included 274 patients who were hospitalized for acute cerebral infarction and underwent a FEES between 2016 and 2018. The effects of early nutritional intervention after an assessment by a FEES within 48 h from admission were evaluated. The patients were divided into a shorter hospital stay group (<30 days) and a longer group (≥30 days). A multivariate analysis was performed to identify the predictive factors for a shorter hospital stay. RESULTS: The overall patient characteristics were as follows: 166 men; median age, 81 years old; and median body mass index (BMI), 21.1 kg/m2. No significant differences in the age, sex, or BMI were found between the shorter and longer hospital stay groups. A FEES within 48 h of admission (odds ratio [OR], 2.040; 95% confidence interval [CI], 1.120-3.700; p=0.019), FILS level ≥6 at admission (OR, 2.300; 95% CI, 1.190-4.440; p=0.013), and an administered energy dose of ≥18.5 kcal/kg on hospital day 3 (OR, 2.360; 95% CI, 1.180-4.690; p=0.015) were independently associated with a hospital stay <30 days. CONCLUSIONS: Patients with acute cerebral infarction are more likely to have a shorter hospital stay (<30 days) if they undergo a FEES early after admission and receive optimal nutritional intervention.


Asunto(s)
Deglución , Hospitales , Anciano de 80 o más Años , Infarto Cerebral/diagnóstico , Infarto Cerebral/terapia , Humanos , Tiempo de Internación , Masculino , Estudios Retrospectivos
8.
BMC Biol ; 16(1): 2, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29325568

RESUMEN

Insights from inherited forms of parkinsonism suggest that insufficient mitophagy may be one etiology of the disease. PINK1/Parkin-dependent mitophagy, which helps maintain a healthy mitochondrial network, is initiated by activation of the PINK1 kinase specifically on damaged mitochondria. Recent investigation of this process reveals that import of PINK1 into mitochondria is regulated and yields a stress-sensing mechanism. In this review, we focus on the mechanisms of mitochondrial stress-dependent PINK1 activation that is exerted by regulated import of PINK1 into different mitochondrial compartments and how this offers strategies to pharmacologically activate the PINK1/Parkin pathway.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Estrés Fisiológico/fisiología , Animales , Humanos , Trastornos Parkinsonianos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Biol Chem ; 290(17): 10791-803, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25752609

RESUMEN

p38 mitogen-activated protein kinases (MAPKs) play important roles in various cellular stress responses, including cell death, which is roughly categorized into apoptosis and necrosis. Although p38 signaling has been extensively studied, the molecular mechanisms of p38-mediated cell death are unclear. ASK1 is a stress-responsive MAP3K that acts as an upstream kinase of p38 and is activated by various stresses, such as oxidative stress. Here, we show that NR4A2, a member of the NR4A nuclear receptor family, acts as a necrosis promoter downstream of ASK1-p38 pathway during oxidative stress. Although NR4A2 is well known as a nucleus-localized transcription factor, we found that it is translocated into the cytosol after phosphorylation by p38. Because the phosphorylation site mutants of NR4A2 cannot rescue the cell death-promoting activity, ASK1-p38 pathway-dependent phosphorylation and subsequent cytoplasmic translocation of NR4A2 may be required for oxidative stress-induced cell death. In addition, NR4A2-mediated cell death does not depend on caspases and receptor-interacting protein 1 (RIP1)-RIP3 complex, suggesting that NR4A2 promotes an RIP kinase-independent necrotic type of cell death. Our findings may enable a more precise understanding of molecular mechanisms that regulate oxidative stress-induced and p38-mediated necrosis.


Asunto(s)
MAP Quinasa Quinasa Quinasa 5/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Transporte Biológico Activo , Línea Celular , Citoplasma/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , MAP Quinasa Quinasa Quinasa 5/genética , Sistema de Señalización de MAP Quinasas , Ratones , Necrosis/etiología , Necrosis/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Estrés Oxidativo , Fosforilación , ARN Interferente Pequeño/genética
10.
Biochim Biophys Acta ; 1850(2): 274-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25459516

RESUMEN

BACKGROUND: Mitochondria are multifunctional organelles that not only serve as cellular energy stores but are also actively involved in several cellular stress responses, including apoptosis. In addition, mitochondria themselves are also continuously challenged by stresses such as reactive oxygen species (ROS), an inevitable by-product of oxidative phosphorylation. To exert various functions against these stresses, mitochondria must be equipped with appropriate stress responses that monitor and maintain their quality. SCOPE OF REVIEW: Interestingly, increasing evidence indicates that mitochondrial proteolysis has important roles in mitochondrial and cellular stress responses. In this review, we summarize current advances in mitochondrial proteolysis-mediated stress responses. MAJOR CONCLUSIONS: Mitochondrial proteases do not only function as surveillance systems of protein quality control by degrading unfolded proteins but also regulate mitochondrial stress responses by processing specific mitochondrial proteins. GENERAL SIGNIFICANCE: Studies on the regulation of mitochondrial proteolysis-mediated stress responses will provide the novel mechanistic insights into the stress response research fields.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Estrés Fisiológico/fisiología , Animales , Apoptosis/fisiología , Humanos , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo
11.
J Cell Biol ; 223(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38619450

RESUMEN

Using an engineered mitochondrial clogger, Krakowczyk et al. (https://doi.org/10.1083/jcb.202306051) identified the OMA1 protease as a critical component that eliminates import failure at the TOM translocase in mammalian cells, providing a novel quality control mechanism that is distinct from those described in yeast.


Asunto(s)
Mamíferos , Metaloproteasas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Animales , Mitocondrias , Péptido Hidrolasas , Saccharomyces cerevisiae/genética , Metaloproteasas/metabolismo , Proteínas Mitocondriales/metabolismo
12.
J Biol Chem ; 287(41): 34635-45, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22915595

RESUMEN

Regulated intramembrane proteolysis is a widely conserved mechanism for controlling diverse biological processes. Considering that proteolysis is irreversible, it must be precisely regulated in a context-dependent manner. Here, we show that phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is cleaved in its N-terminal transmembrane domain in response to mitochondrial membrane potential (ΔΨ(m)) loss. This ΔΨ(m) loss-dependent cleavage of PGAM5 was mediated by presenilin-associated rhomboid-like (PARL). PARL is a mitochondrial resident rhomboid serine protease and has recently been reported to mediate the cleavage of PINK1, a mitochondrial Ser/Thr protein kinase, in healthy mitochondria with intact ΔΨ(m). Intriguingly, we found that PARL dissociated from PINK1 and reciprocally associated with PGAM5 in response to ΔΨ(m) loss. These results suggest that PARL mediates differential cleavage of PINK1 and PGAM5 depending on the health status of mitochondria. Our data provide a prototypical example of stress-dependent regulation of PARL-mediated regulated intramembrane proteolysis.


Asunto(s)
Proteínas Portadoras/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Metaloproteasas/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Proteolisis , Proteínas Portadoras/genética , Células HEK293 , Células HeLa , Humanos , Metaloproteasas/genética , Proteínas Mitocondriales/genética , Fosfoproteínas Fosfatasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
13.
Cell Rep ; 42(5): 112454, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37160114

RESUMEN

PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo
14.
J Am Soc Mass Spectrom ; 32(9): 2358-2365, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33909971

RESUMEN

Protein biotinylation via chemical or enzymatic reactions is often coupled with streptavidin-based enrichment and on-bead digestion in numerous biological applications. However, the popular on-bead digestion method faces major challenges of streptavidin contamination, overwhelming signals from endogenous biotinylated proteins, the lost information on biotinylation sites, and limited sequence coverage of enriched proteins. Here, we explored thiol-cleavable biotin as an alternative approach to elute biotinylated proteins from streptavidin-coated beads for both chemical biotinylation and biotin ligase-based proximity labeling. All possible amino acid sites for biotinylation were thoroughly evaluated in addition to the primary lysine residue. We found that biotinylation at lysine residues notably reduces the trypsin digestion efficiency, which can be mitigated by the thiol-cleavable biotinylation method. We then evaluated the applicability of thiol-cleavable biotin as a substrate for proximity labeling in living cells, where TurboID biotin ligase was engineered onto the mitochondrial inner membrane facing the mitochondrial matrix. As a proof-of-principle study, thiol-cleavable biotin-assisted TurboID proteomics achieved remarkable intraorganelle spatial resolution with significantly enriched proteins localized in the mitochondrial inner membrane and mitochondrial matrix.


Asunto(s)
Biotina/química , Proteínas Mitocondriales , Proteómica/métodos , Compuestos de Sulfhidrilo/química , Biotina/metabolismo , Biotinilación , Células HEK293 , Células HeLa , Humanos , Mitocondrias/química , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Compuestos de Sulfhidrilo/metabolismo
15.
Mol Biol Cell ; 32(21): ar32, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495738

RESUMEN

Mitochondria evolved from endosymbiotic bacteria to become essential organelles of eukaryotic cells. The unique lipid composition and structure of mitochondrial membranes are critical for the proper functioning of mitochondria. However, stress responses that help maintain the mitochondrial membrane integrity are not well understood. One reason for this lack of insight is the absence of efficient tools to specifically damage mitochondrial membranes. Here, through a compound screen, we found that two bis-biguanide compounds, chlorhexidine and alexidine, modified the activity of the inner mitochondrial membrane (IMM)-resident protease OMA1 by altering the integrity of the IMM. These compounds are well-known bactericides whose mechanism of action has centered on their damage-inducing activity on bacterial membranes. We found alexidine binds to the IMM likely through the electrostatic interaction driven by the membrane potential as well as an affinity for anionic phospholipids. Electron microscopic analysis revealed that alexidine severely perturbated the cristae structure. Notably, alexidine evoked a specific transcriptional/proteostasis signature that was not induced by other typical mitochondrial stressors, highlighting the unique property of alexidine as a novel mitochondrial membrane stressor. Our findings provide a chemical-biological tool that should enable the delineation of mitochondrial stress-signaling pathways required to maintain the mitochondrial membrane homeostasis.


Asunto(s)
Antibacterianos/farmacología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Biguanidas/farmacología , Clorhexidina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Homeostasis , Humanos , Membranas/metabolismo , Metaloendopeptidasas/efectos de los fármacos , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfolípidos/metabolismo
16.
J Biochem ; 167(3): 217-224, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504668

RESUMEN

PTEN-induced kinase 1 (PINK1) is a mitochondrial kinase whose activity is tightly regulated by the mitochondrial health status. In response to mitochondrial damage, activated PINK1 can promote mitophagy, an autophagic elimination of damaged mitochondria, by cooperating with Parkin ubiquitin ligase. Loss-of-function of PINK1/Parkin-mediated mitophagy results in the accumulation of dysfunctional mitochondria, which could be one aetiology of Parkinson's disease (PD). Within step-by-step signalling cascades of PINK1/Parkin-mediated mitophagy, mitochondrial damage-dependent PINK1 kinase activation is a critical step to trigger the mitophagy signal. Recent investigation of this process reveals that this stress-dependent PINK1 kinase activation is achieved by its regulated import into different mitochondrial compartments. Thus, PINK1 import regulation stands at an important crossroad to determine the mitochondrial fate-'keep' or 'remove'? In this review, we will summarize how the PINK1 import is regulated in a mitochondrial health status-dependent manner and how this process could be pharmacologically modulated to activate the PINK1/Parkin pathway.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Mitocondrias/patología , Mitofagia/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Dominios Proteicos/genética , Transporte de Proteínas , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética
17.
J Biochem ; 168(2): 93-102, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484875

RESUMEN

The translation of messenger RNA (mRNA) into protein is a multistep process by which genetic information transcribed into an mRNA is decoded to produce a specific polypeptide chain of amino acids. Ribosomes play a central role in translation by coordinately working with various translation regulatory factors and aminoacyl-transfer RNAs. Various stresses attenuate the ribosomal synthesis in the nucleolus as well as the translation rate in the cytosol. To efficiently reallocate cellular energy and resources, mammalian cells are endowed with mechanisms that directly link the suppression of translation-related processes to the activation of stress adaptation programmes. This review focuses on the integrated stress response (ISR) and the nucleolar stress response (NSR) both of which are activated by various stressors and selectively upregulate stress-responsive transcription factors. Emerging findings have delineated the detailed molecular mechanisms of the ISR and NSR and expanded their physiological and pathological significances.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Animales , Humanos , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA