Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(2): 223-240, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622092

RESUMEN

Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.


Asunto(s)
Mitocondrias , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Biochemistry (Mosc) ; 88(10): 1596-1607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38105027

RESUMEN

Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Mitocondrias/metabolismo , Oxidación-Reducción , Adenosina Trifosfato/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293129

RESUMEN

We investigated the nephroprotective effect of D-panthenol in rhabdomyolysis-induced acute kidney injury (AKI). Adult male Wistar rats were injected with 50% glycerol solution to induce rhabdomyolysis. Animals with rhabdomyolysis were injected with D-panthenol (200 mg/kg) for 7 days. On day 8, we examined AKI markers, renal histology, antioxidant capacity, and protein glutathionylation in kidneys to uncover mechanisms of D-panthenol effects. Rhabdomyolysis kidneys were shown to have pathomorphological alterations (mononuclear infiltration, dilatation of tubules, and hyaline casts in Henle's loops and collecting ducts). Activities of skeletal muscle damage markers (creatine kinase and lactate dehydrogenase) increased, myoglobinuria was observed, and creatinine, BUN, and pantetheinase activity in serum and urine rose. Signs of oxidative stress in the kidney tissue of rhabdomyolysis rats, increased levels of lipid peroxidation products, and activities of antioxidant enzymes (SOD, catalase, and glutathione peroxidase) were all alleviated by administration of D-panthenol. Its application improved kidney morphology and decreased AKI markers. Mechanisms of D-panthenol's beneficial effects were associated with an increase in total coenzyme A levels, activity of Krebs cycle enzymes, and attenuation of protein glutathionylation. D-Panthenol protects kidneys from rhabdomyolysis-induced AKI through antioxidant effects, normalization of mitochondrial metabolism, and modulation of glutathione-dependent signaling.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Masculino , Ratas , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Creatinina/metabolismo , Glutatión Peroxidasa/metabolismo , Glicerol/metabolismo , Ratas Wistar , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inducido químicamente , Estrés Oxidativo , Riñón/metabolismo , Glutatión/metabolismo , Creatina Quinasa/metabolismo , Superóxido Dismutasa/metabolismo , Coenzima A/metabolismo , Lactato Deshidrogenasas/metabolismo
4.
Pharmaceutics ; 16(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38675106

RESUMEN

There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.

5.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37627599

RESUMEN

The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.

6.
FEBS J ; 289(18): 5697-5713, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373508

RESUMEN

Age-related impairment of coordination of the processes of maintaining mitochondrial homeostasis is associated with a decrease in the functionality of cells and leads to degenerative processes. mtDNA can be a marker of oxidative stress and tissue degeneration. However, the mechanism of accumulation of age-related damage in mtDNA remains unclear. In the present study, we analyzed the accumulation of mtDNA damage in several organs of rats during aging and the possibility of reversing these alterations by dietary restriction (DR). We showed that mtDNA of brain compartments (with the exception of the cerebellum), along with kidney mtDNA, was the most susceptible to accumulation of age-related damage, whereas liver, testis, and lung were the least susceptible organs. DR prevented age-related accumulation of mtDNA damage in the cortex and led to its decrease in the lung and testis. Changes in mtDNA copy number and expression of genes involved in the regulation of mitochondrial biogenesis and mitophagy were also tissue-specific. There was a tendency for an age-related decrease in the copy number of mtDNA in the striatum and its increase in the kidney. DR promoted an increase in the amount of mtDNA in the cerebellum and hippocampus. mtDNA damage may be associated not only with the metabolic activity of organs, but also with the lipid composition and activity of processes associated with the isoprostanes pathway of lipid peroxidation. The comparison of polyunsaturated fatty acids and oxylipin profiles in old rats showed that DR decreased the synthesis of arachidonic acid and its metabolites synthesized by the cyclooxygenase, cytochrome P450 monooxygenases and lipoxygenase metabolic pathways.


Asunto(s)
ADN Mitocondrial , Oxilipinas , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Ácidos Araquidónicos , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Isoprostanos , Lipooxigenasas/genética , Lipooxigenasas/metabolismo , Masculino , Estrés Oxidativo , Prostaglandina-Endoperóxido Sintasas/genética , Ratas
7.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34829571

RESUMEN

The glutathione system in the mitochondria of the brain plays an important role in maintaining the redox balance and thiol-disulfide homeostasis, whose violations are the important component of the biochemical shifts in neurodegenerative diseases. Mitochondrial dysfunction is known to be accompanied by the activation of free radical processes, changes in energy metabolism, and is involved in the induction of apoptotic signals. The formation of disulfide bonds is a leading factor in the folding and maintenance of the three-dimensional conformation of many specific proteins that selectively accumulate in brain structures during neurodegenerative pathology. In this study, we estimated brain mitochondria redox status and functioning during induction of oxidative damage in vitro. We have shown that the development of oxidative stress in vitro is accompanied by inhibition of energy metabolism in the brain mitochondria, a shift in the redox potential of the glutathione system to the oxidized side, and activation of S-glutathionylation of proteins. Moreover, we studied the effects of pantothenic acid derivatives-precursors of coenzyme A (CoA), primarily D-panthenol, that exhibit high neuroprotective activity in experimental models of neurodegeneration. Panthenol contributes to the significant restoration of the activity of enzymes of mitochondrial energy metabolism, normalization of the redox potential of the glutathione system, and a decrease in the level of S-glutathionylated proteins in brain mitochondria. The addition of succinate and glutathione precursor N-acetylcysteine enhances the protective effects of the drug.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA