Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(4): 2288-2300, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38128552

RESUMEN

The water status of the living tissue in leaves between the xylem and stomata (outside xylem zone (OXZ) plays a critical role in plant function and global mass and energy balance but has remained largely inaccessible. We resolve the local water relations of OXZ tissue using a nanogel reporter of water potential (ψ), AquaDust, that enables an in situ, nondestructive measurement of both ψ of xylem and highly localized ψ at the terminus of transpiration in the OXZ. Working in maize (Zea mays L.), these localized measurements reveal gradients in the OXZ that are several folds larger than those based on conventional methods and values of ψ in the mesophyll apoplast well below the macroscopic turgor loss potential. We find a strong loss of hydraulic conductance in both the bundle sheath and the mesophyll with decreasing xylem potential but not with evaporative demand. Our measurements suggest the OXZ plays an active role in regulating the transpiration path, and our methods provide the means to study this phenomenon.


Asunto(s)
Agua , Zea mays , Agua/fisiología , Zea mays/fisiología , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Estomas de Plantas/fisiología
2.
Nat Chem Biol ; 19(7): 911-920, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37188959

RESUMEN

The incorporation of the nonstandard amino acid para-nitro-L-phenylalanine (pN-Phe) within proteins has been used for diverse applications, including the termination of immune self-tolerance. However, the requirement for the provision of chemically synthesized pN-Phe to cells limits the contexts where this technology can be harnessed. Here we report the construction of a live bacterial producer of synthetic nitrated proteins by coupling metabolic engineering and genetic code expansion. We achieved the biosynthesis of pN-Phe in Escherichia coli by creating a pathway that features a previously uncharacterized nonheme diiron N-monooxygenase, which resulted in pN-Phe titers of 820 ± 130 µM after optimization. After we identified an orthogonal translation system that exhibited selectivity toward pN-Phe rather than a precursor metabolite, we constructed a single strain that incorporated biosynthesized pN-Phe within a specific site of a reporter protein. Overall, our study has created a foundational technology platform for distributed and autonomous production of nitrated proteins.


Asunto(s)
Proteínas de Escherichia coli , Nitratos , Nitratos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/química , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo
3.
Am J Physiol Renal Physiol ; 326(3): F420-F437, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205546

RESUMEN

Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Adulto , Humanos , Insuficiencia Renal Crónica/complicaciones , Ejercicio Físico , Hipertensión/complicaciones , Obesidad/complicaciones , Inflamación
4.
J Comput Chem ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970347

RESUMEN

In this study, nanocomposites of g-C3N4/MN4 (where M is Mn, Fe and Co) have been designed using advanced density functional theory (DFT) calculations. A comprehensive analysis was conducted on the geometry, electronic, optical properties, work function, charge transfer interaction and adhesion energy of the g-C3N4/MN4 heterostructures and concluded that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions exhibit higher photocatalytic performance than individual units. The better photocatalytic activity can be attributed mainly by two facts; (i) the visible light absorption of both g-C3N4/FeN4 and g-C3N4/CoN4 interfaces are higher compared to its isolated analogs and (ii) a significant enhancement of band gap energy in g-C3N4/FeN4 and g-C3N4/CoN4 heterostructures limited the electron-hole recombination significantly. The potential of the g-C3N4/MN4 heterojunctions as a photocatalyst for the water splitting reaction was assessed by examining its band alignment for water splitting reaction. Importantly, while the electronic and magnetic properties of MN4 systems were studied, this is the first example of inclusion of MN4 on graphene-based material (g-C3N4) for studying the photocatalytic activity. The state of the art DFT calculations emphasis that g-C3N4/FeN4 and g-C3N4/CoN4 heterojunctions are half metallic photocatalysts, which is limited till date.

5.
New Phytol ; 242(2): 453-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413216

RESUMEN

The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue-specific origins of leaf hydraulic properties and their dependence on water status. We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside-xylem tissues. These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10-fold) of hydraulic conductance of the outside-xylem tissue, is not however strong enough to significantly limit transpiration. These observations highlight the need to reassess models of water transfer through the outside-xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.


Asunto(s)
Solanum lycopersicum , Hojas de la Planta/fisiología , Agua/fisiología , Xilema/fisiología , Transpiración de Plantas
6.
J Chem Phys ; 160(3)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38235796

RESUMEN

In this article, we investigate the structural relaxation of lithium silicate glass during isothermal physical aging by monitoring the temporal evolution of its refractive index and enthalpy following relatively large (10-40 °C) up- and down-jumps in temperature. The Kohlrausch-Williams-Watts function aptly describes the up- and down-jump data when analyzed separately. For temperature down-jumps, the glass exhibits a typical stretched exponential kinetic behavior with the non-exponentiality parameter ß < 1, whereas up-jumps show a compressed exponential behavior (ß > 1). We analyzed these datasets using the non-exponential and non-linear Tool-Narayanaswamy-Moynihan (TNM) model, aiming to provide a comprehensive description of the primary or α-relaxation of the glass. This model described both up- and down-jump datasets using a single value of ß ≤ 1. However, the standard TNM model exhibited a progressively reduced capacity to describe the data for larger temperature jumps, which is likely a manifestation of the temperature dependence of the non-exponentiality or non-linearity of the relaxation process. We hypothesize that the compressed exponential relaxation kinetics observed for temperature up-jumps stems from a nucleation-growth-percolation-based evolution on the dynamically mobile regions within the structure, leading to a self-acceleration of the dynamics. On the other hand, temperature down-jumps result in self-retardation, as the slow-relaxing denser regions percolate in the structure to give rise to a stretched exponential behavior.

7.
J Chem Phys ; 158(14): 141103, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061470

RESUMEN

The effects of atomic mass in terms of its zero-point vibrational energy, on molar volume, glass transition temperature Tg, and viscosity are studied in glassy and supercooled B2O3 liquids using boron isotope substitutions. The molar volume decreases and Tg and isothermal viscosity increase on the substitution of lighter 10B isotopes with the heavier 11B isotopes. These effects are argued to be a manifestation of the higher zero-point vibrational energy of the lighter isotope, which along with the anharmonicity of the potential well, results in a longer equilibrium inter-atomic distance and larger mean-square displacement with respect to that for the heavier isotope. The isotope effect on viscosity is increasingly enhanced as the temperature approaches Tg, which is shown to be consistent with the prediction of the elastic models of viscous flow and shear relaxation.

8.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36744674

RESUMEN

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

9.
Rev Cardiovasc Med ; 23(12): 396, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37680455

RESUMEN

Noncommunicable chronic diseases, such as obesity, cardiovascular disease (CVD), and type 2 diabetes (T2D), pose significant health challenges globally. Important advances have been made in the understanding of the pathophysiologal mechanisms and treatment of noncommunicable diseases in recent years. Lack of physical activity is a primary contributor to many noncommunicable diseases including metabolic syndrome, T2D, CVD, and obesity. Certain diabetes medications and non-pharmaceutical interventions, such as physical activity and exercise, are shown to be effective in decreasing the CVD risks associated with heart disease, stroke, obesity, prediabetes, and T2D. The ability to measure and analyze circulating adult stem cells (ASCs) has gained particular interest due to their potential to identify at-risk individuals and implications in various therapeutics. Therefore, the purpose of this narrative review is to (1) provide an overview of ASCs; specifically endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs), (2) describe the responses of these cells to acute and chronic exercise, and (3) highlight the potential effect of exercise on EPCs and MSCs in aging and disease. EPCs are circulating cells, abundantly available in peripheral blood, bone marrow, and umbilical cord, and are defined by cell surface markers such as CD34+. EPCs are expected to play an important role in angiogenesis and neovascularization and have been implicated in the treatment of CVD. MSCs are essential for maintaining tissue and organ homeostasis. MSCs are defined as multipotent heterogeneous cells that can proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology, form colonies in vitro, and can differentiate into ostyeoblasts, adipocytes, chondroblasts, and myoblasts. In the presence of aging and disease, EPCs and MSCs decrease in quantity and functional capacity. Importantly, exercise facilitates EPC differentiation and production from bone marrow and also helps to promote migration and homing to the hypoxic and damaged tissue which in turn improve angiogenesis and vasculogenesis. Similarly, exercise stimulates increases in proliferation and migratory activity of MSCs. Despite the reported benefits of exercise on EPC and MSC number and function, little is known regarding the optimal exercise prescription for aging and clinical populations. Moreover, the interactions between medications and exercise on EPCs and MSCs is currently unclear. Use of ASCs as a biomarker have the potential to revolutionize the management of patients with a variety of metabolic and obesity related disorders and also pro-inflammatory diseases. Further investigation of clinical entities are urgently needed to understand the implications of interventions such as exercise, diet, and various medications on EPC and MSC quantity and function in aging and clinical populations.

10.
FASEB J ; 35(9): e21814, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369624

RESUMEN

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocondrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/genética , Adaptación Biológica/genética , Apoptosis/genética , Línea Celular Tumoral , Metabolismo Energético/genética , Glucosa/genética , Células Hep G2 , Homeostasis/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Estrés Fisiológico/genética , Activación Transcripcional/genética
11.
Ann Bot ; 130(3): 301-316, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35896037

RESUMEN

BACKGROUND: Recent reports of extreme levels of undersaturation in internal leaf air spaces have called into question one of the foundational assumptions of leaf gas exchange analysis, that leaf air spaces are effectively saturated with water vapour at leaf surface temperature. Historically, inferring the biophysical states controlling assimilation and transpiration from the fluxes directly measured by gas exchange systems has presented a number of challenges, including: (1) a mismatch in scales between the area of flux measurement, the biochemical cellular scale and the meso-scale introduced by the localization of the fluxes to stomatal pores; (2) the inaccessibility of the internal states of CO2 and water vapour required to define conductances; and (3) uncertainties about the pathways these internal fluxes travel. In response, plant physiologists have adopted a set of simplifying assumptions that define phenomenological concepts such as stomatal and mesophyll conductances. SCOPE: Investigators have long been concerned that a failure of basic assumptions could be distorting our understanding of these phenomenological conductances, and the biophysical states inside leaves. Here we review these assumptions and historical efforts to test them. We then explore whether artefacts in analysis arising from the averaging of fluxes over macroscopic leaf areas could provide alternative explanations for some part, if not all, of reported extreme states of undersaturation. CONCLUSIONS: Spatial heterogeneities can, in some cases, create the appearance of undersaturation in the internal air spaces of leaves. Further refinement of experimental approaches will be required to separate undersaturation from the effects of spatial variations in fluxes or conductances. Novel combinations of current and emerging technologies hold promise for meeting this challenge.


Asunto(s)
Dióxido de Carbono , Vapor , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Plantas/metabolismo , Temperatura
12.
J Chem Phys ; 156(22): 224502, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705407

RESUMEN

The effect of the network-to-molecular structural transformation with increasing phosphorus content in PxSe100-x (30 ≤ x ≤ 67) supercooled liquids on their shear-mechanical response is investigated using oscillatory shear rheometry. While network liquids with 30 ≤ x ≤ 40 are characterized by shear relaxation via a network bond scission/renewal process, a Maxwell scaling of the storage (G') and loss (G″) shear moduli, and a frequency-independent viscosity at low frequencies, a new relaxation process emerges in liquids with intermediate compositions (45 ≤ x ≤ 50). This process is attributed to an interconversion between network and molecular structural moieties. Predominantly molecular liquids with x ≥ 63, on the other hand, are characterized by a departure from Maxwell behavior as the storage modulus shows a linear frequency scaling G'(ω) ∼ ω over nearly the entire frequency range below the G'-G″ crossover and a nearly constant ratio of G″/G' in the terminal region. Moreover, the dynamic viscosity of these rather fragile molecular liquids shows significant enhancement over that of network liquids at frequencies below the dynamical onset and does not reach a frequency-independent regime even at frequencies that are four orders of magnitude lower than that of the onset. Such power-law relaxation behavior of the molecular liquids is ascribed to an extremely broad distribution of relaxation timescales with the coexistence of rapid rotational motion of individual molecules and cooperative dynamics of transient molecular clusters, with the latter being significantly slower than the shear relaxation timescale.

13.
J Chem Phys ; 157(11): 114503, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137798

RESUMEN

A fundamental and much-debated issue in glass science is the existence and nature of liquid-liquid transitions in glass-forming liquids. Here, we report the existence of a novel reentrant structural transition in a S-rich arsenic sulfide liquid of composition As2.5S97.5. The nature of this transition and its effect on viscosity are investigated in situ using a combination of differential scanning calorimetry and simultaneous Raman spectroscopic and rheometric measurements. The results indicate that, upon heating significantly above its glass transition temperature (261 K), the constituent Sn sulfur chains in the structure of the supercooled liquid first undergo a Sn⇌S8 chain-to-ring conversion near ∼383 K, which is exothermic in nature. Further heating above 393 K alters the equilibrium to shift in the opposite direction toward an endothermic ring-to-chain conversion characteristic of the well-known λ-transition in pure sulfur liquid. This behavior is attributed to the competing effects of enthalpy of mixing and conformational entropy of ring and chain elements in the liquid. The existence of reentrant structural transitions in glass-forming liquids could provide important insights into the thermodynamics of liquid-liquid transitions and may have important consequences for harnessing novel functionalities of derived glasses.

14.
Acc Chem Res ; 53(12): 2869-2878, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186005

RESUMEN

Core principles of chemistry are ubiquitously invoked to shed light on the nature of molecular level interactions in nanoconfined fluids, which play a pivotal role in a wide range of processes in geochemistry, biology, and engineering. A detailed understanding of the physicochemical processes involved in the flow, structural transitions, and freezing or melting behavior of fluids confined within nanometer-sized pores of solid materials is thus of enormous importance for both basic research and technological applications.This Account provides a perspective on new insights into the thermodynamic and kinetic transitions of nanoconfined fluids in their stable and metastable forms. After briefly introducing the unique properties of mesoporous silicas from the SBA, MCM, and FDU families that serve as the confinement matrices, combining highly ordered single and bimodal mesopore architectures with tunable pore sizes in the ∼2-15 nm range and narrow size distributions, recent studies on melting/freezing behavior of water confined in these host matrices are reviewed. While differential scanning calorimetry (DSC) reveals a linear relationship between melting point depression and pore size (independent of the pore shape), as predicted by the Gibbs-Thomson relation, variable temperature 2H wide-line nuclear magnetic resonance (NMR) spectroscopy studies confirm the core-shell model of water and give evidence for a layer-by-layer freezing mechanism, which gives rise to an apparent fragile-to-strong transition in the solidification dynamics.In contrast to the freezing/melting behavior of water, the effect of nanoconfinement on the glass transition of supercooled liquids is nonuniversal and the glass transition temperature Tg can either increase or decrease with the dimensionality and extent of confinement. This nonuniversal behavior is exemplified by the two glass-forming molecular liquids, glycerol and ortho-terphenyl (OTP). While glycerol shows an increase in Tg and a pronounced slowdown of the rotational dynamics of the constituent molecules due to a change in the molecular packing between the bulk and the confined liquid, OTP displays a linear and confining-media-dependent depression of Tg with increased confinement that is strongly influenced by the pore-liquid interface characteristics.This Account concludes with a focus on recent experimental evidence of extreme spatial and dynamical heterogeneity in both freezing and glass transition processes. This discovery was enabled by the unique mesoporous structures of SBA-16 and FDU-5, possessing bimodal architectures with two interconnected pore types of different size and shape (spherical and cylindrical). For the very first time, two melting points for water and two glass transitions for supercooled OTP, corresponding to a specific pore type, were observed. Collectively, these observations strongly suggest a close mechanistic connection between the local fluctuations in the structure and dynamics of nanoconfined liquids. While the findings reviewed in this Account provide new insights into thermodynamic and kinetic transitions of fluids, there remain many unanswered questions regarding the effects of nanoconfinement on the fundamental properties of fluids, which offer exciting future opportunities in chemical research.

15.
Cardiovasc Diabetol ; 20(1): 44, 2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33581737

RESUMEN

BACKGROUND: Endothelial progenitor cells (EPCs) has been shown to be dysfunctional in both type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) leading to poor regeneration of endothelium and renal perfusion. EPCs have been shown to be a robust cardiovascular disease (CVD) risk indicator. Effect of sodium glucose channel inhibitors (SGLT2i) such as Canagliflozin (CG) on a cellular biomarker such as CD34+ve progenitor cells, which may help predict CVD risk, in patients with T2DM with established CKD has not been explored. METHODS: This is a pilot study where 29 subjects taking metformin and/or Insulin were enrolled in a 16 week, double blind, randomized placebo matched trial, with a low dose 100 mg CG as the intervention group compared to matched placebo. Type 2 diabetes subjects (30-70 years old), with hemoglobin A1c (HbA1c) of 7-10%, were enrolled. CD34+ve cell number, migratory function, gene expression along with vascular parameters such as arterial stiffness, serum biochemistry pertaining to cardio-metabolic health, resting energy expenditure and body composition were measured. Data were collected at week 0, 8 and 16. A mixed model regression analysis was done and p value less than 0.05 was considered statistically significant. RESULTS: A significant expression of CXCR4 receptor with a concomittant increase in migratory function of CD34+ve cells was observed in CG treated group as compared to placebo group. Gene expression analysis of CD34+ve cells showed an increase in expression of antioxidants (superoxide dismutase 2 or SOD2, Catalase and Glutathione Peroxidase or GPX) and notable endothelial markers (PECAM1, VEGF-A, and NOS3). A significant reduction in glucose and HbA1c levels were observed along with improved systolic and diastolic blood pressure in the CG group. A significant increase in adiponectin (p = 0.006) was also noted in treatment group. Urinary exosomal protein leak in urine, examining podocyte health (podocalyxin, Wilm's tumor and nephrin) showed reduction with CG CONCLUSION: Low dose Canagliflozin has a beneficial effect on CD34+ cell function, serum biochemistry and urinary podocyte specific exosomes in type 2 diabetes.


Asunto(s)
Antígenos CD34/metabolismo , Glucemia/efectos de los fármacos , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Progenitoras Endoteliales/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Adulto , Anciano , Biomarcadores/sangre , Glucemia/metabolismo , Canagliflozina/efectos adversos , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Método Doble Ciego , Quimioterapia Combinada , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Insulina/uso terapéutico , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Fenotipo , Proyectos Piloto , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Factores de Tiempo , Resultado del Tratamiento
16.
J Chem Phys ; 155(5): 054503, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364353

RESUMEN

The viscoelastic behavior and shear relaxation in supercooled [NaPO3]x[Zn(PO3)2]1-x metaphosphate liquids with 0.2 ≤ x ≤ 1.0 are investigated using a combination of small amplitude oscillatory and steady shear parallel plate rheometry, resonant ultrasound spectroscopy, and differential scanning calorimetry. The results demonstrate that these liquids are thermorheologically complex with the coexistence of a fast and a slow relaxation process, which could be attributed to the segmental motion of the phosphate chains and the Zn-O bond scission/renewal dynamics, respectively. The segmental motion of the phosphate chains is found to be the dominant process associated with the shear relaxation for all metaphosphate liquids. The compositional evolution of the calorimetric fragility of these liquids is shown to be related to the conformational entropy of the constituent phosphate chains, which is manifested by the width of the relaxation time distribution for the segmental chain motion. This entropy decreases and the temporal coupling between the chain dynamics and Zn-O bond scission-renewal increases with the increasing Zn content as the higher field strength Zn modifier ions provide more effective cross-linking between the phosphate chains.

17.
J Chem Phys ; 154(16): 164502, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33940843

RESUMEN

Germanium selenide glasses of compositions spanning the whole glass-formation range are aged at room temperature for up to 20 years. A prominent enthalpy relaxation process is observed in all glasses, and its structural origin is analyzed by Raman spectroscopy. The structural relaxation is manifested in the Raman spectra as a decrease in the ratio of edge- to corner-sharing GeSe4/2 tetrahedral units. This structural evolution can be explained in terms of configurational entropy and density changes. Changes in Raman features and enthalpy follow an identical stretched exponential relaxation function characteristic of aging in glasses. The compositional dependence of enthalpy relaxation after 20 years is in agreement with kinetic considerations based on the glass transition temperature of each glass. The relaxation behavior and heat capacity curves are consistent with standard glass relaxation models for all compositions. These results indicate that the non-reversing enthalpy obtained by modulated differential scanning calorimetry (MDSC), which suggests the existence of non-aging glasses, is not a reliable measure of the ability of a glass to relax. Instead, it is suggested that an interpretation of MDSC data in terms of complex heat capacity provides a more complete and reliable assessment of the relaxation properties of glasses.

18.
Biochem J ; 477(19): 3803-3818, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32926159

RESUMEN

hTERT, the catalytic component of the human telomerase enzyme, is regulated by post-translational modifications, like phosphorylation and ubiquitination by multiple proteins which remarkably affects the overall activity of the enzyme. Here we report that hTERT gets SUMOylated by SUMO1 and polycomb protein CBX4 acts as the SUMO E3 ligase of hTERT. hTERT SUMOylation positively regulates its telomerase activity which can be inhibited by SENP3-mediated deSUMOylation. Interestingly, we have established a new role of hTERT SUMOylation in the repression of E-cadherin gene expression and consequent triggering on the epithelial-mesenchymal-transition (EMT) program in breast cancer cells. We also observed that catalytically active CBX4, leads to retention of hTERT/ZEB1 complex onto E-cadherin promoter leading to its repression through hTERT-SUMOylation. Further through wound healing and invasion assays in breast cancer cells, we showed the tumor promoting ability of hTERT was significantly compromised upon overexpression of SUMO-defective mutant of hTERT. Thus our findings establish a new post-translational modification of hTERT which on one hand is involved in telomerase activity maintenance and on the other hand plays a crucial role in the regulation of gene expression thereby promoting migration and invasion of breast cancer cells.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Ligasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Telomerasa/metabolismo , Transcripción Genética , Antígenos CD/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Femenino , Células HeLa , Humanos , Ligasas/genética , Células MCF-7 , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas del Grupo Polycomb/genética , Telomerasa/genética
19.
Biochemistry ; 59(4): 389-399, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31746185

RESUMEN

Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic ß cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.


Asunto(s)
Histonas/metabolismo , Factores de Transcripción/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Hep G2 , Código de Histonas , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Metilación , Modelos Moleculares , Dedos de Zinc PHD/fisiología , Unión Proteica , Factores de Transcripción/fisiología
20.
Cardiovasc Diabetol ; 19(1): 72, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493344

RESUMEN

BACKGROUND: Endothelial Progenitor cells (EPCs) has been shown to be dysfunctional in both type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) leading to poor regeneration of endothelium and renal perfusion. EPCs have been shown to be a robust cardiovascular disease (CVD) risk indicator. Cellular mechanisms of DPP4 inhibitors such as linagliptin (LG) on CVD risk, in patients with T2DM with established CKD has not been established. Linagliptin, a DPP4 inhibitor when added to insulin, metformin or both may improve endothelial dysfunction in a diabetic kidney disease (DKD) population. METHODS: 31 subjects taking metformin and/or Insulin were enrolled in this 12 weeks, double blind, randomized placebo matched trial, with 5 mg LG compared to placebo. Type 2 diabetes subjects (30-70 years old), HbA1c of 6.5-10%, CKD Stage 1-3 were included. CD34+ cell number, migratory function, gene expression along with vascular parameters such as arterial stiffness, biochemistry, resting energy expenditure and body composition were measured. Data were collected at week 0, 6 and 12. A mixed model regression analysis was done with p value < 0.05 considered significant. RESULTS: A double positive CD34/CD184 cell count had a statistically significant increase (p < 0.02) as determined by flow cytometry in LG group where CD184 is SDF1a cell surface receptor. Though mRNA differences in CD34+ve was more pronounced CD34- cell mRNA analysis showed increase in antioxidants (superoxide dismutase 2 or SOD2, Catalase and Glutathione Peroxidase or GPX) and prominent endothelial markers (PECAM1, VEGF-A, vWF and NOS3). Arterial stiffness measures such as augmentation Index (AI) (p < 0.04) and pulse wave analysis (PWV) were improved (reduced in stiffness) in LG group. A reduction in LDL: HDL ratio was noted in treatment group (p < 0.04). Urinary exosome protein examining podocyte health (podocalyxin, Wilms tumor and nephrin) showed reduction or improvement. CONCLUSIONS: In DKD subjects, Linagliptin promotes an increase in CXCR4 expression on CD34 + progenitor cells with a concomitant improvement in vascular and renal parameters at 12 weeks. Trial Registration Number NCT02467478 Date of Registration: 06/08/2015.


Asunto(s)
Antígenos CD34/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Células Progenitoras Endoteliales/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Linagliptina/uso terapéutico , Metformina/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Adulto , Anciano , Biomarcadores/sangre , Células Cultivadas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/diagnóstico , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , District of Columbia , Método Doble Ciego , Quimioterapia Combinada , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Femenino , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Linagliptina/efectos adversos , Masculino , Metformina/efectos adversos , Persona de Mediana Edad , Proyectos Piloto , Receptores CXCR4/sangre , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA