Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biochemistry ; 59(29): 2718-2728, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32628469

RESUMEN

Polycomb repression complex 1 (PRC1) is a multiprotein assembly that regulates transcription. The Polycomb group ring finger 1 protein (PCGF1) is central in the assembly of the noncanonical PRC1 variant called PRC1.1 through its direct interaction with BCOR (BCL-6-interacting corepressor) or its paralog, BCOR-like 1 (BCORL1). Previous structural studies revealed that the C-terminal PUFD domain of BCORL1 is necessary and sufficient to heterodimerize with the RAWUL domain of PCGF1 and, together, form a new protein-protein binding interface that associates with the histone demethylase KDM2B. Here, we show that the PUFD of BCOR and BCORL1 differ in their abilities to assemble with KDM2B. Unlike BCORL1, the PUFD of BCOR alone does not stably assemble with KDM2B. Rather, additional residues N-terminal to the BCOR PUFD are necessary for stable association. Nuclear magnetic resonance (NMR) structure determination and 15N T2 relaxation time measurements of the BCOR PUFD alone indicate that the termini of the BCOR PUFD, which are critical for binding PCGF1 and KDM2B, are disordered. This suggests a hierarchical mode of assembly whereby BCOR PUFD termini become structurally ordered upon binding PCGF1, which then allows stable association with KDM2B. Notably, BCOR internal tandem duplications (ITDs) leading to pediatric kidney and brain tumors map to the PUFD termini. Binding studies with the BCOR ITD indicate the ITD would disrupt PRC1.1 assembly, suggesting loss of the ability to assemble PRC1.1 is a critical molecular event driving tumorigenesis.


Asunto(s)
Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Modelos Moleculares , Complejo Represivo Polycomb 1/química , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Represoras/química
2.
Infect Immun ; 79(8): 3106-16, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21576328

RESUMEN

Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Helicobacter/patología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Laminina/metabolismo , Animales , Escherichia coli/genética , Femenino , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Expresión Génica , Gerbillinae , Infecciones por Helicobacter/microbiología , Inflamación/patología , Masculino , Plásmidos
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1339-44, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22102228

RESUMEN

The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 Å resolution. Multiwavength anomalous diffraction (MAD) data were collected utilizing the Zn(2+) ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparum ARFGAP.


Asunto(s)
Factores de Ribosilacion-ADP/química , Dominio Catalítico , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
4.
Infect Immun ; 78(5): 1841-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20176792

RESUMEN

Helicobacter pylori chronically infects the gastric mucosa, where it can be found free in mucus, attached to cells, and intracellularly. H. pylori requires iron for growth, but the sources of iron used in vivo are unclear. In previous studies, the inability to culture H. pylori without serum made it difficult to determine which host iron sources might be used by H. pylori. Using iron-deficient, chemically defined medium, we determined that H. pylori can bind and extract iron from hemoglobin, transferrin, and lactoferrin. H. pylori can use both bovine and human versions of both lactoferrin and transferrin, contrary to previous reports. Unlike other pathogens, H. pylori preferentially binds the iron-free forms of transferrin and lactoferrin, which limits its ability to extract iron from normal serum, which is not iron saturated. This novel strategy may have evolved to permit limited growth in host tissue during persistent colonization while excessive injury or iron depletion is prevented.


Asunto(s)
Medios de Cultivo/química , Helicobacter pylori/metabolismo , Hierro/metabolismo , Animales , Bovinos , Hemoglobinas/metabolismo , Humanos , Lactoferrina/metabolismo , Transferrina/metabolismo
5.
Bioorg Med Chem ; 18(11): 4056-66, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20452776

RESUMEN

Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas' disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.


Asunto(s)
Antagonistas del Ácido Fólico/química , Tetrahidrofolato Deshidrogenasa/química , Tripanocidas/química , Trypanosoma cruzi/enzimología , Enfermedad de Chagas/tratamiento farmacológico , Simulación por Computador , Cristalización , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Antagonistas del Ácido Fólico/síntesis química , Humanos , Unión Proteica , Quinazolinas , Tripanocidas/síntesis química , Tripanocidas/farmacología
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 11): 1426-31, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21045287

RESUMEN

Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 Šresolution and is compared with the structures of mammalian ARF1s.


Asunto(s)
Factor 1 de Ribosilacion-ADP/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
7.
Protein Sci ; 29(12): 2446-2458, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058314

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.


Asunto(s)
Proteínas Bacterianas/química , Chlamydia trachomatis/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Modelos Moleculares , Plasminógeno/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Plasminógeno/metabolismo , Unión Proteica
8.
Nat Commun ; 11(1): 5609, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154383

RESUMEN

Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Complejo Represivo Polycomb 1/química , Proteínas del Grupo Polycomb/metabolismo , Motivo alfa Estéril/fisiología , Animales , Compartimento Celular , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Polimerizacion , Motivo alfa Estéril/genética , Ubiquitinación
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 7): 704-16, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19564691

RESUMEN

The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50,000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of antifolate-based therapeutic agents for the treatment of T. cruzi infection.


Asunto(s)
Antagonistas del Ácido Fólico/química , Metotrexato/química , Complejos Multienzimáticos/química , Tetrahidrofolato Deshidrogenasa/química , Timidilato Sintasa/química , Trimetrexato/química , Trypanosoma cruzi/enzimología , Animales , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/enzimología , Antagonistas del Ácido Fólico/metabolismo , Humanos , Metotrexato/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Especificidad por Sustrato , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/metabolismo , Trimetrexato/metabolismo
10.
BMC Struct Biol ; 9: 9, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19243605

RESUMEN

BACKGROUND: The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. RESULTS: We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2A resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in the substrate-free conformation. Orientation of the substrate with respect to the active site histidine and serine (in the mutant enzyme) also varies in different subunits. CONCLUSION: The structures of the C. parvum GAPDH ternary complex and other GAPDH complexes demonstrate the plasticity of the substrate binding site. We propose that the active site of GAPDH can accommodate the substrate in multiple conformations at multiple locations during the initial encounter. However, the C-3 phosphate group clearly prefers the 'new Pi' site for initial binding in the active site.


Asunto(s)
Cryptosporidium parvum/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Dominio Catalítico , Cryptosporidium parvum/genética , Escherichia coli/genética , Gliceraldehído 3-Fosfato/química , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , NAD/química , NAD/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difracción de Rayos X
11.
J Mol Biol ; 370(4): 701-13, 2007 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-17543335

RESUMEN

Human lactoferrin, a component of the innate immune system, kills a wide variety of microorganisms including the Gram positive bacteria Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) efficiently inhibits this bactericidal action. The crystal structure of a complex of the lactoferrin-binding domain of PspA with the N-lobe of human lactoferrin reveals direct and specific interactions between the negatively charged surface of PspA helices and the highly cationic lactoferricin moiety of lactoferrin. Binding of PspA blocks surface accessibility of this bactericidal peptide preventing it from penetrating the bacterial membrane. Results of site-directed mutagenesis, in vitro protein binding assays and isothermal titration calorimetry measurements corroborate that the specific electrostatic interactions observed in the crystal structure represent major associations between PspA and lactoferrin. The structure provides a snapshot of the protective mechanism utilized by pathogens against the host's first line of defense. PspA represents a major virulence factor and a promising vaccine candidate. Insights from the structure of the complex have implications for designing therapeutic strategies for treatment and prevention of pneumococcal diseases that remain a major public health problem worldwide.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Lactoferrina/química , Lactoferrina/inmunología , Streptococcus pneumoniae/química , Streptococcus pneumoniae/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Antígenos de Superficie/química , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Antígenos de Superficie/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bovinos , Cristalografía por Rayos X , Humanos , Lactoferrina/genética , Lactoferrina/metabolismo , Fusión de Membrana , Modelos Moleculares , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Cuaternaria de Proteína , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Homología Estructural de Proteína
12.
Biochim Biophys Acta ; 1750(2): 166-72, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15953771

RESUMEN

Cryptosporidium parvum is one of the major causes of waterborne diseases worldwide. This protozoan parasite depends mainly on the anaerobic oxidation of glucose for energy production. In order to identify the differences in the three-dimensional structure of key glycolytic enzymes of C. parvum and its human host, we have expressed, purified and crystallized recombinant versions of three important glycolytic enzymes of the parasite, namely, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase. Lactate dehydrogenase has been crystallized in the absence and in the presence of its substrates and cofactors, while pyruvate kinase and glyceraldehyde 3-phosphate dehydrogenase were crystallized only in the apo-form. X-ray diffraction data have been collected for all crystals.


Asunto(s)
Cryptosporidium parvum/enzimología , Cristalización/métodos , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Glucólisis , L-Lactato Deshidrogenasa/química , Piruvato Quinasa/química , Animales , Cromatografía en Gel , Clonación Molecular , Cryptosporidium parvum/genética , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/aislamiento & purificación , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/aislamiento & purificación , Piruvato Quinasa/genética , Piruvato Quinasa/aislamiento & purificación
13.
Biochim Biophys Acta ; 1698(1): 127-30, 2004 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15063323

RESUMEN

GTPase activating protein for ARF GTPAse (ARFGAP) from the malaria parasite Plasmodium falciparum was expressed, purified and crystallized. Crystals of ARFGAP belong to trigonal space group P321 (or its enantiomorph) with unit cell parameters a=b=95.89 and c=92.46 A. Diffraction data to 2.4-A resolution have been collected. Calculation of self-rotation function suggested the presence of two molecules in the asymmetric unit.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas Activadoras de GTPasa/genética , Plasmodium falciparum/metabolismo , Factores de Ribosilacion-ADP/biosíntesis , Factores de Ribosilacion-ADP/química , Animales , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/química , Plasmodium falciparum/química
14.
Int J Biol Macromol ; 74: 608-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25542170

RESUMEN

The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes.


Asunto(s)
Cryptosporidium parvum/enzimología , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1333-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286935

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a conserved cytosolic enzyme, which plays a key role in glycolysis. GAPDH catalyzes the oxidative phosphorylation of D-glyceraldehyde 3-phosphate using NAD or NADP as a cofactor. In addition, GAPDH localized on the surface of some bacteria is thought to be involved in macromolecular interactions and bacterial pathogenesis. GAPDH on the surface of group B streptococcus (GBS) enhances bacterial virulence and is a potential vaccine candidate. Here, the crystal structure of GBS GAPDH from Streptococcus agalactiae in complex with NAD is reported at 2.46 Šresolution. Although the overall structure of GBS GAPDH is very similar to those of other GAPDHs, the crystal structure reveals a significant difference in the area spanning residues 294-307, which appears to be more acidic. The amino-acid sequence of this region of GBS GAPDH is also distinct compared with other GAPDHs. This region therefore may be of interest as an immunogen for vaccine development.


Asunto(s)
Proteínas Bacterianas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Streptococcus agalactiae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , NAD/química , Unión Proteica , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína , Propiedades de Superficie
16.
PLoS One ; 7(10): e46875, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056503

RESUMEN

Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320) of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.


Asunto(s)
Cryptosporidium parvum/enzimología , Piruvato Quinasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Bases de Datos de Proteínas , Disulfuros/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Piruvato Quinasa/metabolismo , Sulfatos/metabolismo
18.
Antimicrob Agents Chemother ; 49(8): 3234-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16048931

RESUMEN

Trypanosoma cruzi, a protozoan parasite, is the causative agent for Chagas' disease, which poses serious public health problem in Latin America. The two drugs available for the treatment of this disease are effective only against recent infections and are toxic. Dihydrofolate reductase (DHFR) has a proven track record as a drug target. The lipophilic antifolate trimetrexate (TMQ), which is an FDA-approved drug for the treatment of Pneumocystis carinii infection in AIDS patients, is a potent inhibitor of T. cruzi DHFR activity, with an inhibitory constant of 6.6 nM. The compound is also highly effective in killing T. cruzi parasites. The 50 and 90% lethal dose values against the trypomastigote are 19 and 36 nM, and the corresponding values for the amastigote form are 26 and 72 nM, respectively. However, as TMQ is also a good inhibitor of human DHFR, further improvement of the selectivity of this drug would be preferable. Identification of a novel antifolate selective against T. cruzi would open up new therapeutic avenues for treatment of Chagas' disease.


Asunto(s)
Antagonistas del Ácido Fólico/farmacología , Glucuronatos/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Timidilato Sintasa/antagonistas & inhibidores , Trimetrexato/análogos & derivados , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Combinación de Medicamentos , Humanos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Pruebas de Sensibilidad Parasitaria , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Trimetrexato/farmacología , Trypanosoma cruzi/enzimología
19.
J Struct Biol ; 152(1): 64-75, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16168672

RESUMEN

Reduced pteridines are required for a number of important cellular functions. Trypanosomatid parasites, unlike their mammalian hosts, are pteridine auxotrophs and salvage the precursor pteridines from the host and reduce them to the respective biologically active tetrahydro forms using parasite-encoded enzymes. These enzymes may offer selective drug targets. In Leishmania, pteridine reductase 1 (PTR1), the primary enzyme for reducing pterins, is also responsible for resistance to antifolate drugs. Typically, PTR1 is more active with fully oxidized biopterin and folate than with their reduced counterparts. We have identified an enzyme, TcPTR2 of Trypanosoma cruzi, which though very similar to PTR1 in its primary sequence, can reduce only dihydrobiopterin and dihydrofolate and not oxidized pteridines. The structures of an inhibitor (methotrexate) and a substrate (dihydrofolate) complex of this enzyme demonstrate that the orientation of the substrate and the inhibitor in the active site of TcPTR2 are different from each other. However, the orientation of each ligand is similar to that of the corresponding ligand in Leishmania major PTR1 complexes.


Asunto(s)
Isoenzimas/química , Oxidorreductasas/química , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/química , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Sustancias Macromoleculares , Metotrexato/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , NADP/química , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA