RESUMEN
OBJECTIVE: c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4+c-Met+ T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). METHODS: c-Met expression by CD4+ T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4+c-Met+ T cells was assessed in EAE. RESULTS: CD4+c-Met+ T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin α4 (Itgα4). The adoptive transfer of Itgα4-expressing CD4+Vα3.2+c-Met+ T cells induces increased disease severity compared to CD4+Vα3.2+c-Met- T cells. Finally, CD4+c-Met+ T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itgα4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4+ T lymphocytes associated with neuroinflammation.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/patología , Humanos , Integrina alfa4 , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias , Células Th17RESUMEN
BACKGROUND: CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35-55 T cell-mediated EAE model. METHODS: Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55 in complete Freund's adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. RESULTS: In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37-50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions CONCLUSIONS: Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Secuencia de Aminoácidos , Animales , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/genética , Femenino , Adyuvante de Freund/toxicidad , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/toxicidad , Proteínas Tirosina Quinasas Receptoras/genéticaRESUMEN
CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met+ CTLs), that are endowed with enhanced cytolytic capacity. HGF directly inhibited the cytolytic function of c-Met+ CTLs, both in 2D in vitro assays and in vivo, leading to reduced T cell responses against metastatic melanoma. To further investigate the role of c-Met+ CTLs in a three-dimensional (3D) setting, we studied their function within B16 melanoma spheroids and examined the impact of cell-cell contact on the modulation of inhibitory checkpoint molecules' expression, such as KLRG1, PD-1, and CTLA-4. Additionally, we evaluated the cytolytic capacity of human CTL clones expressing c-Met (c-Met+) and compared it to c-Met- CTL clones. Our results indicated that, similar to their murine counterparts, c-Met+ human CTL clones exhibited increased cytolytic activity compared to c-Met- CTL clones, and this enhanced function was negatively regulated by the presence of HGF. Taken together, our findings highlight the potential of targeting the HGF/c-Met pathway to modulate CTL-mediated anti-tumor immunity. This research holds promise for developing strategies to enhance the effectiveness of CTL-based immunotherapies against cancer.
RESUMEN
Celiac disease (CD) is a multisystem disease in which different organs may be affected. We investigate whether circulating innate lymphoid cells (ILCs) contribute to the CD peripheral inflammatory status. We find that the CD cytokine profile is characterized by high concentrations of IL-12p40, IL-18, and IFN-γ, paralleled by an expansion of ILC precursors (ILCPs). In the presence of the gliadin peptides p31-43 and pα-9, ILCPs from CD patients increase transglutaminase 2 (TG2) expression, produce IL-18 and IFN-γ, and stimulate CD4+ T lymphocytes. IFN-γ is also produced upon stimulation with IL-12p40 and IL-18 and is inhibited by the addition of vitamin D. Low levels of blood vitamin D correlate with high IFN-γ and ILCP presence and mark the CD population mostly affected by extraintestinal symptoms. Dietary vitamin D supplementation appears to be an interesting therapeutic approach to dampen ILCP-mediated IFN-γ production.