Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37750764

RESUMEN

A facultative anaerobic, Gram-strain-negative, rod-shaped bacterium (strain NBU2970T) was isolated by using modified ichip in situ cultivation from a marine sediment sample collected from Meishan Island in the East China Sea. Strain NBU2970T grew optimally at 37 °C, with a NaCl concentration of 2.0 % (w/v) and at pH 7.0. The 16S rRNA gene sequence analyses revealed that strain NBU2970T represents a novel species with the genus Muricauda, sharing highest sequence identities with Muricauda beolgyonensis BB-My12T (96.1 %), Muricauda alvinocaridis SCR12T (96.0 %), Muricauda taeanensis 105T (96.0 %) and Muricauda ruestringensis B1T (95.6 %). Phylogenetic analyses also indicated that strain NBU2970T clustered with the genus Muricauda and was closely related to M. beolgyonensis BB-My12T and M. ruestringensis B1T. The draft genome sequence of strain NBU2970T was composed of six contigs with a size of 3.2 Mbp, containing 3045 protein-coding genes and 38 RNA genes. The DNA G+C content was 43.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU2970T and related species of the genus Muricauda were well below the threshold limit for prokaryotic species delineation. The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The only respiratory quinone was MK-6. The major polar lipid was phosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2970T is considered to be a representative of a novel species in the genus Muricauda, for which the name Muricauda meishanensis sp. nov. is proposed. The type strain is NBU2970T (=KCTC 82915T=MCCC 1K06394T).


Asunto(s)
Flavobacteriaceae , Agua de Mar , Agua de Mar/microbiología , Filogenia , Composición de Base , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Anaerobiosis , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Sedimentos Geológicos/microbiología , China
2.
Phytopathology ; 113(10): 2006-2013, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37260102

RESUMEN

Two infectious clones of turnip mosaic virus (TuMV), pKBC-1 and pKBC-8, with differential infectivity in Chinese cabbage (Brassica rapa subsp. pekinensis), were obtained. Both infected Nicotiana benthamiana systemically, inducing similar symptoms, whereas only virus KBC-8 infected Chinese cabbage systemically. To identify the determinants affecting infectivity on Chinese cabbage, chimeric clones were constructed by restriction fragment exchange between the parental clones and tested on several Chinese cabbage cultivars. Chimeric clones p1N8C and p8N1C demonstrated that the C-terminal portion of the polyprotein determines systemic infection of Chinese cabbage despite only three amino acid differences in this region, in the cylindrical inclusion (CI), viral protein genome-linked (VPg), and coat protein (CP). A second pair of hybrid constructs, pHindIII-1N8C and pHindIII-8N1C, failed to infect cultivars CR Victory and Jinseonnorang systemically, yet pHindIII-1N8C caused hypersensitive response-like lesions on inoculated leaves of these cultivars, and could systemically infect cultivars CR Chusarang and Jeongsang; this suggests that R genes effective against TuMV may exist in the first two cultivars but not the latter two. Constructs with single amino acid changes in both VPg (K2045E) and CP (Y3095H) failed to infect Chinese cabbage, implying that at least one of these two amino acid substitutions is essential for successful infection on Chinese cabbage. Successful infection by mutant KBC-8-CP-H and delayed infection with mutant HJY1-VPg-E following mutation or reversion suggested that VPg (2045K) is the residue required for infection of Chinese cabbage and involved in the interaction between VPg and eukaryotic initiation factor eIF(iso)4E, confirmed by yeast two-hybrid assay.


Asunto(s)
Brassica , Potyvirus , Aminoácidos/metabolismo , Enfermedades de las Plantas , Potyvirus/genética
3.
Arch Virol ; 167(4): 1157-1162, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35258648

RESUMEN

In this work, two new turnip mosaic virus (TuMV) strains (Canola-12 and Canola-14) overcoming resistance in canola (Brassica napus) were isolated from a B. napus sample that showed typical TuMV-like symptoms and was collected in the city of Gimcheon, South Korea, in 2020. The complete genome sequence was determined and an infectious clone was made for each isolate. Phylogenetic analysis indicated that the strains isolated from canola belonged to the World-B group. Both infectious clones, which used 35S and T7 promoters to drive expression, induced systemic symptoms in Nicotiana benthamiana and B. napus. To our knowledge, this is the first report of TuMV infecting B. napus in South Korea.


Asunto(s)
Brassica napus , Potyvirus , Células Clonales , ADN Complementario/genética , Filogenia , Enfermedades de las Plantas , Potyvirus/genética
4.
Arch Virol ; 167(4): 1089-1098, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35258649

RESUMEN

Perilla is an annual herb with a unique aroma and taste that has been cultivated in Korea for hundreds of years. It has been widely cultivated in many Asian and European countries as a food and medicinal crop. Recently, several viruses have been reported to cause diseases in perilla in Korea, including turnip mosaic virus (TuMV), which is known as a brassica pathogen due to its significant damage to brassica crops. In this study, we determined the complete genome sequences of two new TuMV isolates originating from perilla in Korea. Full-length infectious cDNA clones of these two isolates were constructed, and their infectivity was tested by agroinfiltration of Nicotiana benthamiana and sap inoculation of Chinese cabbage and radish plants. In addition, we analyzed the phylogenetic relationship of six new Korean TuMV isolates to members of the four major groups. We also used RDP4 software to conduct recombination analysis of recent isolates from Korea, which provided new insight into the evolutionary relationships of Korean isolates of TuMV.


Asunto(s)
Perilla frutescens , Células Clonales , Filogenia , Enfermedades de las Plantas , Potyvirus
5.
Phytopathology ; 112(6): 1361-1372, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35113673

RESUMEN

Three infectious clones of radish mosaic virus (RaMV) were generated from isolates collected in mainland Korea (RaMV-Gg) and Jeju Island (RaMV-Aa and RaMV-Bb). These isolates differed in sequences and pathogenicity. Examination of the wild-type isolates and reassortants between the genomic RNA1 and RNA2 of these three isolates revealed that severe symptoms were associated with RNA1 of isolates Aa or Gg causing systemic necrosis in Nicotiana benthamiana, or with RNA1 of isolate Bb for induction of veinal necrosis and severe mosaic symptoms in radish. Reverse transcription, followed by quantitative real-time PCR (Q-RT-PCR), results from infected N. benthamiana confirmed that viral RNA2 accumulation level was correlated to RaMV necrosis-inducing ability, and that the RNA2 accumulation level was mostly dependent on the origin of RNA1. However, in radish, Q-RT-PCR results showed more similar viral RNA2 accumulation levels regardless of the ability of the isolate to induce necrosis. Phylogenetic analysis of genomic RNAs sequence including previously characterized isolates from North America, Europe, and Asia suggest possible recombination within RNA1, while analysis of concatenated RNA1+RNA2 sequences indicates that reassortment of RNA1 and RNA2 has been more important in the evolution of RaMV isolates than recombination. Korean isolate Aa is a potential reassortant between isolates RaMV-J and RaMV-TW, while isolate Bb might have evolved from reassortment between isolates RaMV-CA and RaMV-J. The Korean isolates were shown to also be able to infect Chinese cabbage, raising concerns that RaMV may spread from radish fields to the Chinese cabbage crop in Korea, causing further economic losses.


Asunto(s)
Nicotiana , Raphanus , Células Clonales , Comovirus , Necrosis , Filogenia , Enfermedades de las Plantas , ARN Bacteriano , ARN Viral/genética
6.
Prep Biochem Biotechnol ; 52(2): 144-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33950798

RESUMEN

Ginseng flower bud (GFB), as an inexpensive part of Panax ginseng, attracted significant attention as a beneficial functional food with medicinal potentials due to its high content of ginsenosides. A few studies focused on the utilization of heat treatment and citric acid treatment to process ginseng flowers, converting its polar ginsenosides into rare ginsenosides to improve its biological activities. Thus, in this study, we compared the changes of ginsenosides in GFB after citric acid and heat treatment by HPLC method. The results revealed that less-polar ginsenoside, Rg6 and F4, increased to 1.01 and 0.27% by heat treatment, respectively. Further, ginsenoside F2 increased to 1.13% with 1 M citric acid treatment. Furthermore, based on the combination of these two processing methods for the first time, the conversion rate of less-polar ginsenosides surged to 80%. The content of ginsenoside Rg3(s) and Rg5 increased to 1.509 and 1.871%, respectively, by simultaneous heat and citric acid treatment. Therefore, a processing approach that simultaneously performs heat and citric acid treatments has been proposed, and this considerably inexpensive and convenient processing method could be applied to the processing of GFBs and produce less-polar ginsenosides.


Asunto(s)
Ácido Cítrico/farmacología , Flores/metabolismo , Ginsenósidos/metabolismo , Calor , Panax/metabolismo , Cromatografía Líquida de Alta Presión
7.
Proc Natl Acad Sci U S A ; 115(46): E10979-E10987, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373842

RESUMEN

Effector-triggered immunity (ETI) in plants involves a large family of nucleotide-binding leucine-rich repeat (NLR) immune receptors, including Toll/IL-1 receptor-NLRs (TNLs) and coiled-coil NLRs (CNLs). Although various NLR immune receptors are known, a mechanistic understanding of NLR function in ETI remains unclear. The TNL Recognition of XopQ 1 (Roq1) recognizes the effectors XopQ and HopQ1 from Xanthomonas and Pseudomonas, respectively, which activates resistance to Xanthomonas euvesicatoria and Xanthomonas gardneri in an Enhanced Disease Susceptibility 1 (EDS1)-dependent way in Nicotiana benthamiana In this study, we found that the N. benthamiana N requirement gene 1 (NRG1), a CNL protein required for the tobacco TNL protein N-mediated resistance to tobacco mosaic virus, is also essential for immune signaling [including hypersensitive response (HR)] triggered by the TNLs Roq1 and Recognition of Peronospora parasitica 1 (RPP1), but not by the CNLs Bs2 and Rps2, suggesting that NRG1 may be a conserved key component in TNL signaling pathways. Besides EDS1, Roq1 and NRG1 are necessary for resistance to Xanthomonas and Pseudomonas in N. benthamiana NRG1 functions downstream of Roq1 and EDS1 and physically associates with EDS1 in mediating XopQ-Roq1-triggered immunity. Moreover, RNA sequencing analysis showed that XopQ-triggered gene-expression profile changes in N. benthamiana were almost entirely mediated by Roq1 and EDS1 and were largely regulated by NRG1. Overall, our study demonstrates that NRG1 is a key component that acts downstream of EDS1 to mediate various TNL signaling pathways, including Roq1 and RPP1-mediated HR, resistance to Xanthomonas and Pseudomonas, and XopQ-regulated transcriptional changes in N. benthamiana.


Asunto(s)
Nicotiana/genética , Nicotiana/metabolismo , Subgrupos de Linfocitos B/metabolismo , Proteínas de Unión al ADN , Proteínas Repetidas Ricas en Leucina , Proteínas NLR/metabolismo , Neurregulina-1/genética , Neurregulina-1/fisiología , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética , Dominios Proteicos , Proteínas/genética , Pseudomonas , Transducción de Señal , Transcriptoma , Xanthomonas
8.
New Phytol ; 227(5): 1530-1543, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32344448

RESUMEN

Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.


Asunto(s)
Solanum lycopersicum , Solanum , Resistencia a la Enfermedad/genética , Evolución Molecular , Solanum lycopersicum/genética , Proteínas NLR/genética , Filogenia , Fitomejoramiento , Solanum/genética
9.
Phytopathology ; 109(5): 904-912, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30629482

RESUMEN

Infectious clones were generated from 17 new Korean radish isolates of Turnip mosaic virus (TuMV). Phylogenetic analysis indicated that all new isolates, and three previously characterized Korean radish isolates, belong to the basal-BR group (indicating that the pathotype can infect both Brassica and Raphanus spp.). Pairwise analysis revealed genomic nucleotide and polyprotein amino acid identities of >87.9 and >95.7%, respectively. Five clones (HJY1, HJY2, KIH2, BE, and prior isolate R007) had lower sequence identities than other isolates and produced mild symptoms in Nicotiana benthamiana. These isolates formed three distinct sequence classes (HJY1/HJY2/R007, KIH2, and BE), and several differential amino acid residues (in P1, P3, 6K2, and VPg) were present only in mild isolates HJY1, HJY2, and R007. The remaining isolates all induced systemic necrosis in N. benthamiana. Four mild isolates formed a phylogenetic subclade separate from another subclade including all of the necrosis-inducing isolates plus mild isolate KIH2. Symptom severity in radish and Chinese cabbage genotypes was not correlated with pathogenicity in N. benthamiana; indeed, Chinese cabbage cultivar Norang was not infected by any isolate, whereas Chinese cabbage cultivar Chusarang was uniformly susceptible. Four isolates were unable to infect radish cultivar Iljin, but no specific amino acid residues were correlated with avirulence. These results may lead to the identification of new resistance genes against TuMV.


Asunto(s)
Brassica rapa/virología , Nicotiana/virología , Potyvirus/genética , Raphanus/virología , Especificidad del Huésped , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Virulencia
10.
Phytopathology ; 109(9): 1638-1647, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31044662

RESUMEN

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5', central, and 3' domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5' 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis 'Norang', which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.


Asunto(s)
Brassica , Nicotiana , Brassica/virología , Quimera , Enfermedades de las Plantas/microbiología , Potyvirus , Nicotiana/virología
11.
Mol Plant Microbe Interact ; 31(3): 356-362, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29140163

RESUMEN

A destructive pathogen, Phytophthora infestans, secretes hundreds of effectors for successful survival in its host plants. The effectors modulate the plant defense system at diverse cellular compartments to take an advantage of pathogen survivals. A few research studies have shown the mode of action of each effector and their interacting proteins in plant cells. Here, we investigated the mode of action of a P. infestans effector, Pi23226, which induces cell death in Nicotiana benthamiana. To identify its host factors, we performed coimmunoprecipitation and liquid chromatography-mass spectrometry, and selected members of heat shock protein 70 (HSP70s) as candidates. These HSP70s, known to function as chaperones, were associated with Pi23226 in planta and accelerated Pi23226-induced cell death. Additionally, they were found to be involved in plant basal defense by suppressing the growth of P. infestans. We also found that specific components of a mitogen-activated protein kinase cascade were involved in Pi23226-induced cell death. Our findings show that HSP70s functions in defense systems by regulating effector-triggered cell death and by suppressing the growth of the pathogen. This suggests that host plants manipulate the ubiquitous proteins to detect pathogen effectors for functioning in the defense system.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Sistema de Señalización de MAP Quinasas , Nicotiana/citología , Nicotiana/microbiología , Phytophthora infestans/fisiología , Proteínas de Plantas/metabolismo , Muerte Celular , Interacciones Huésped-Patógeno , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Unión Proteica , Transducción de Señal , Nicotiana/enzimología
12.
Plant Biotechnol J ; 16(11): 1904-1917, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29604169

RESUMEN

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.


Asunto(s)
Genoma de Planta/genética , Panax/genética , Adaptación Biológica/genética , Evolución Biológica , Diploidia , Genes del Cloroplasto/genética , Genes de Plantas/genética , Ginsenósidos/biosíntesis , Panax/metabolismo , Tetraploidía
13.
Theor Appl Genet ; 131(5): 1017-1030, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29352323

RESUMEN

KEY MESSAGE: Genotyping of disease resistance to bacterial wilt in tomato by a genome-wide SNP analysis Bacterial wilt caused by Ralstonia pseudosolanacearum is one of the destructive diseases in tomato. The previous studies have identified Bwr-6 (chromosome 6) and Bwr-12 (chromosome 12) loci as the major quantitative trait loci (QTLs) contributing to resistance against bacterial wilt in tomato cultivar 'Hawaii7996'. However, the genetic identities of two QTLs have not been uncovered yet. In this study, using whole-genome resequencing, we analyzed genome-wide single-nucleotide polymorphisms (SNPs) that can distinguish a resistant group, including seven tomato varieties resistant to bacterial wilt, from a susceptible group, including two susceptible to the same disease. In total, 5259 non-synonymous SNPs were found between the two groups. Among them, only 265 SNPs were located in the coding DNA sequences, and the majority of these SNPs were located on chromosomes 6 and 12. The genes that both carry SNP(s) and are near Bwr-6 and Bwr-12 were selected. In particular, four genes in chromosome 12 encode putative leucine-rich repeat (LRR) receptor-like proteins. SNPs within these four genes were used to develop SNP markers, and each SNP marker was validated by a high-resolution melting method. Consequently, one SNP marker, including a functional SNP in a gene, Solyc12g009690.1, could efficiently distinguish tomato varieties resistant to bacterial wilt from susceptible varieties. These results indicate that Solyc12g009690.1, the gene encoding a putative LRR receptor-like protein, might be tightly linked to Bwr-12, and the SNP marker developed in this study will be useful for selection of tomato cultivars resistant to bacterial wilt.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Genes de Plantas , Solanum lycopersicum/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Ralstonia
14.
Biosci Biotechnol Biochem ; 82(9): 1624-1632, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29882485

RESUMEN

Hot springs are regarded as treasury of valuable thermophiles. Like other bacteria, thermophiles are not easily cultivated using conventional culture methods. We used an advanced cultivation method, the filter plate microbial trap (FPMT), to isolate bacteria from thermal springs. In total, 184 isolates were obtained from five thermal springs using the FPMT and standard agar plate method, and their 16S rRNA gene sequences were analyzed. FPMT allowed us to obtain a culture collection that was larger, richer, and more novel than that obtained by standard cultivation. Seven novel species were obtained using the FPMT technique, whereas only one was isolated using a standard cultivation. We also found clear differences in the patterns of phylogenetic diversity and physiological properties between isolates from two cultivation methods. The results have encouraged us to apply the FPMT method in other extreme environments and offer further support for fostering the development of new cultivation methods.


Asunto(s)
Bacterias/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Filogenia , ARN Ribosómico 16S/genética , Siberia
15.
Mol Plant Microbe Interact ; 30(1): 5-15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27925500

RESUMEN

Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Plantas/inmunología , Productos Agrícolas/crecimiento & desarrollo , Inmunidad de la Planta , Transducción de Señal
16.
Blood ; 125(2): 249-60, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25406351

RESUMEN

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC-derived microenvironment permitted homing and maintenance of long-term murine SLAM(+) hematopoietic stem cells (HSCs), as well as human CD34(+)/CD38(-)/CD90(+)/CD45RA(+) HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre , Western Blotting , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Citometría de Flujo , Humanos , Osteogénesis/fisiología
17.
Virus Genes ; 53(2): 286-299, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27913980

RESUMEN

Seed-transmitted viruses have caused significant damage to watermelon crops in Korea in recent years, with cucumber green mottle mosaic virus (CGMMV) infection widespread as a result of infected seed lots. To determine the likely origin of CGMMV infection, we collected CGMMV isolates from watermelon and melon fields and generated full-length infectious cDNA clones. The full-length cDNAs were cloned into newly constructed binary vector pJY, which includes both the 35S and T7 promoters for versatile usage (agroinfiltration and in vitro RNA transcription) and a modified hepatitis delta virus ribozyme sequence to precisely cleave RNA transcripts at the 3' end of the tobamovirus genome. Three CGMMV isolates (OMpj, Wpj, and Mpj) were separately evaluated for infectivity in Nicotiana benthamiana, demonstrated by either Agroinfiltration or inoculation with in vitro RNA transcripts. CGMMV nucleotide identities to other tobamoviruses were calculated from pairwise alignments using DNAMAN. CGMMV identities were 49.89% to tobacco mosaic virus; 49.85% to pepper mild mottle virus; 50.47% to tomato mosaic virus; 60.9% to zucchini green mottle mosaic virus; and 60.96% to kyuri green mottle mosaic virus, confirming that CGMMV is a distinct species most similar to other cucurbit-infecting tobamoviruses. We further performed phylogenetic analysis to determine relationships of our new Korean CGMMV isolates to previously characterized isolates from Canada, China, India, Israel, Japan, Korea, Russia, Spain, and Taiwan available from NCBI. Analysis of CGMMV amino acid sequences showed three major clades, broadly typified as 'Russian,' 'Israeli,' and 'Asian' groups. All of our new Korean isolates fell within the 'Asian' clade. Neither the 128 nor 186 kDa RdRps of the three new isolates showed any detectable gene silencing suppressor function.


Asunto(s)
Cucumis sativus/virología , Cucumovirus/genética , Filogenia , Enfermedades de las Plantas/genética , Bacteriófago T7/genética , Citrullus/virología , Cucumovirus/patogenicidad , Cucurbitaceae/virología , ADN Complementario/genética , Genoma Viral , Enfermedades de las Plantas/virología , Regiones Promotoras Genéticas , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Tobamovirus/genética
18.
Virus Genes ; 53(3): 434-445, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28176159

RESUMEN

Two isolates of Pepper mild mottle virus (PMMoV) were selected from a nationwide survey of pepper fields in South Korea in 2014 and 2015, in which Cucumber mosaic virus was also detected; the two PMMoV isolates, Sangcheong 47 (S-47, KX399390) and Jeongsong 76 (J-76, KX399389), share ~99% nucleotide and amino acid identity and are closely related to Japanese and Chinese isolates at the nucleotide level. Amino acid sequence comparisons revealed 99.73, 99.81, 98.44, and 100% identity in the ORF1, ORF2, MP, and CP, respectively, between S-47 and J-76. In addition, we generated infectious clones of S-47 and J-76, and T7 promoter driven transcripts of each inoculated to Nicotiana benthamiana produced very severe symptoms, whereas only mild symptoms developed in Capsicum annuum. Gene silencing suppressor function of 126 kDa and cytoskeleton-connected plasmodesmata localization of movement protein of S-47 and J-76 showed no difference between isolates, whereas 126 kDa of J-76 clearly formed intracellular aggregates not observed with S-47 126 kDa protein. Differences between these isolates in 126/183 kDa-related functions including subcellular localization suggest that differential interactions with host proteins may affect symptom development in C. annuum.


Asunto(s)
Enfermedades de las Plantas/virología , Tobamovirus/aislamiento & purificación , Tobamovirus/patogenicidad , Proteínas Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Capsicum/virología , Clonación Molecular , Cucumovirus/genética , ADN Complementario/genética , Genoma Viral/genética , Filogenia , Regiones Promotoras Genéticas , Virus ARN/genética , República de Corea , Nicotiana/virología , Tobamovirus/genética
19.
Exp Dermatol ; 25(7): 526-31, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26900010

RESUMEN

Ultraviolet (UV) irradiation on skin triggers photoageing-related phenotypes such as formation of wrinkles. UV ray upregulates matrix metalloproteinase-1 (MMP-1), which in turn degrades extracellular matrix proteins, mostly collagens. Serum amyloid A1 (SAA1) is an acute-phase protein of which plasma concentration increases in response to inflammation. Although the expression of SAA1 in the skin was reported, its function in the skin is yet to be studied. In this research, we found that the expression of SAA1 was increased in acute UV-irradiated buttock skin and photoaged forearm skin in vivo. UV irradiation also increased SAA1 in normal human epidermal keratinocytes (NHEK), and treatment of recombinant human SAA1 (rhSAA1) induced MMP-1 in normal human dermal fibroblasts (NHDF) but not in NHEK. Next, we demonstrated that NHDF treated with UV-irradiated keratinocyte-conditioned media showed the increased MMP-1 expression; however, this increase of MMP-1 in NHDF was inhibited by knockdown of SAA1 in NHEK. In addition, knockdown of Toll-like receptor 4 (TLR4) inhibited rhSAA1-induced MMP-1 expression in NHDF. Taken together, our data showed that UV-induced SAA1 production in NHEK, and this secreted SAA1 induced MMP-1 expression in NHDF in a paracrine manner through TLR4 signalling pathway. Therefore, our results suggest that SAA1 can be a potential mediator for UV-induced MMP-1 expression in human skin.


Asunto(s)
Fibroblastos/metabolismo , Queratinocitos/efectos de la radiación , Metaloproteinasa 1 de la Matriz/metabolismo , Proteína Amiloide A Sérica/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Adulto , Anciano , Anciano de 80 o más Años , Voluntarios Sanos , Humanos , Queratinocitos/metabolismo , Persona de Mediana Edad , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Rayos Ultravioleta/efectos adversos
20.
Arch Virol ; 161(11): 3281-3, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27480416

RESUMEN

The complete genomic sequence of a novel putative member of the genus Potyvirus was detected from Callistephus chinensis (China aster) in South Korea. The genomic RNA consists of 9,859 nucleotides (excluding the 3' poly(A) tail) and contains the typical open reading frame of potyviruses, encoding a putative large polyprotein of 3,154 amino acids. The Callistephus virus is most closely related to plum pox virus and members of the ApVY subgroup which showed 50-52 % polyprotein amino acid sequence identity. These results suggest that the Callistephus virus is a novel member of the genus Potyvirus, tentatively named "callistephus mottle virus" (CalMV).


Asunto(s)
Asteraceae/virología , Genoma Viral , Potyvirus/genética , Potyvirus/aislamiento & purificación , ARN Viral/genética , Análisis de Secuencia de ADN , Análisis por Conglomerados , Sistemas de Lectura Abierta , Filogenia , Poliproteínas/genética , Potyvirus/clasificación , República de Corea , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA