Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360711

RESUMEN

The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1ß production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , Piroptosis , Trasplante de Células Madre , Células Madre , Animales , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , MicroARNs/genética , MicroARNs/farmacología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Piroptosis/efectos de los fármacos , Piroptosis/genética , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Células Madre/patología
2.
Mol Cell Biochem ; 439(1-2): 105-115, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28795305

RESUMEN

During the past decade, microRNAs have continuously been suggested as a promising therapeutic tool due to their beneficial effects, such as their multi-targets and multi-functions in pathologic conditions. As a pathologic phenotype is generally regulated by multiple signaling pathways, in this study we identified a microRNA regulating multiple target genes within cardiac hypertrophic signaling pathways. microRNA-133a is known to play a crucial role in cardiac hypertrophy. However, the role of microRNA-133a, which may regulate several signaling pathways in norepinephrine-induced cardiac hypertrophy via multi-targeting, has not been investigated. In the current study, we showed that microRNA-133a can protect cardiomyocyte hypertrophy against norepinephrine stimulation in neonatal rat ventricular cardiomyocytes via new targets, PKCδ and Gq, all of which are related to downstream signaling pathways of the α1-adrenergic receptor. Taken together, these results suggest the advantages of the therapeutic use of microRNAs as an effective potential drug regulating multiple signaling pathways under pathologic conditions.


Asunto(s)
Cardiomegalia/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Proteína Quinasa C-delta/metabolismo , Transducción de Señal , Animales , Cardiomegalia/patología , Miocitos Cardíacos/patología , Ratas , Receptor de Adenosina A1/metabolismo
3.
Biol Res ; 51(1): 41, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30384862

RESUMEN

BACKGROUND: Osteoarthritis (OA) can be defined as degradation of articular cartilage of the joint, and is the most common degenerative disease. To regenerate the damaged cartilage, different experimental approaches including stem cell therapy have been tried. One of the major limitations of stem cell therapy is the poor post-transplantation survival of the stem cells. Anoikis, where insufficient matrix support and adhesion to extracellular matrix causes apoptotic cell death, is one of the main causes of the low post-transplantation survival rate of stem cells. Therefore, enhancing the initial interaction of the transplanted stem cells with chondrocytes could improve the therapeutic efficacy of stem cell therapy for OA. Previously, protein kinase C activator phorbol 12-myristate 13-acetate (PMA)-induced increase of mesenchymal stem cell adhesion via activation of focal adhesion kinase (FAK) has been reported. In the present study, we examine the effect PMA on the adipose-derived stem cells (ADSCs) adhesion and spreading to culture substrates, and further on the initial interaction between ADSC and chondrocytes. RESULTS: PMA treatment increased the initial adhesion of ADSC to culture substrate and cellular spreading with increased expression of adhesion molecules, such as FAK, vinculin, talin, and paxillin, at both RNA and protein level. Priming of ADSC with PMA increased the number of ADSCs attached to confluent layer of cultured chondrocytes compared to that of untreated ADSCs at early time point (4 h after seeding). CONCLUSION: Taken together, the results of this study suggest that priming ADSCs with PMA can increase the initial interaction with chondrocytes, and this proof of concept can be used to develop a non-invasive therapeutic approach for treating OA. It may also accelerate the regeneration process so that it can relieve the accompanied pain faster in OA patients. Further in vivo studies examining the therapeutic effect of PMA pretreatment of ADSCs for articular cartilage damage are required.


Asunto(s)
Cartílago Articular/citología , Condrocitos/citología , Proteína Quinasa C/farmacología , Células Madre/efectos de los fármacos , Western Blotting , Adhesión Celular , Comunicación Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Supervivencia Celular , Condrocitos/efectos de los fármacos , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Cell Physiol Biochem ; 44(1): 53-65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131029

RESUMEN

BACKGROUND/AIMS: Stromal vascular fraction (SVF) cells are a mixed cell population, and their regenerative capacity has been validated in various therapeutic models. The purpose of this study was to investigate the regenerative mechanisms utilized by implanted SVF cells. Using an in vitro co-culture system, we sought to determine whether SVF implantation into impaired tissue affects endogenous mesenchymal stem cell (MSC) differentiation; MSCs can differentiate into a variety of cell types, and they have a strong regenerative capacity despite their low numbers in impaired tissue. METHODS: Adipose-derived SVF cells obtained from four donors were co-cultured with bone marrow-derived MSCs, and the differential expression of osteogenic markers and osteogenic differentiation inducers over time was analyzed in mono-cultured MSCs and MSCs co-cultured with SVF cells. RESULTS: The co-cultivation of MSCs with SVF cells significantly and mutually induced the expression of osteogenic-specific markers via paracrine and/or autocrine regulation but did not induce adipocyte, chondrocyte or myoblast marker expression. More surprisingly, subsequent osteogenesis and/or comparable effects were rapidly induced within 48 h. CONCLUSION: To the best of our knowledge, this is the first study in which osteogenesis and/or comparable effects were rapidly induced in bone marrow-derived MSCs and adipose-derived SVF cells through co-cultivation. Our findings suggest that the positive effects of SVF implantation into impaired bone may be attributed to the rapid induction of MSC osteogenesis, and the transplantation of co-cultured and preconditioned SVF cells and/or MSCs may be more effective than the transplantation of untreated cells for the treatment of bone defects.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células del Estroma/citología , Tejido Adiposo/citología , Adulto , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis , Osteopontina/genética , Osteopontina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células del Estroma/metabolismo
5.
Biochem Biophys Res Commun ; 491(2): 429-435, 2017 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-28716730

RESUMEN

Connexin 43 (Cx43), a ubiquitous connexin expressed in the heart and skin, is associated with a variety of hereditary conditions. Therefore, the characterization of Cx43-interacting proteins and their dynamics is important to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication but also to identify novel and unanticipated biological functions of Cx43. In the present study, we observed potential targets of Cx43 to determine new molecular functions in cardio-protection. MALDI-TOF mass spectrometry analysis of Cx43 co-immunoprecipitated proteins showed that Cx43 interacts with several proteins related to metabolism. In GeneMANIA network analysis, SGSM3, which has not been previously associated with Cx43, was highly correlated with Cx43 in heart functions, and high levels of SGSM3 appeared to induce the turnover of Cx43 through lysosomal degradation in myocardial infarcted rat hearts. Moreover, we confirmed that lysosomal degradation of Cx43 is dependent upon the interaction between SGSM3 and Cx43 in H9c2 cardiomyocytes. The functional importance of the interaction between SGSM3 and Cx43 was confirmed by results showing that Cx43 expression was enhanced by SGSM3 siRNA knockdown in H9c2 cells. In summary, the results of this study elucidate the molecular mechanisms in which Cx43 with SGSM3 is degraded in myocardial infarcted rat hearts, which may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Comunicación Celular , Línea Celular , Conexina 43/genética , Vasos Coronarios/patología , Vasos Coronarios/cirugía , Uniones Comunicantes/patología , Uniones Comunicantes/ultraestructura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ligadura , Lisosomas/metabolismo , Masculino , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
6.
J Vasc Res ; 54(2): 100-108, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28407626

RESUMEN

Adult stem cells have been studied as a promising therapeutic modality for the functional restoration of the damaged heart. In the present study, a strategy for enhancing the angiogenic efficacy of human mesenchymal stem cells (hMSCs) using micro-RNA was examined. We investigated whether micro-RNA-146a (miR-146a) influences the secretion of vascular endothelial growth factor (VEGF) and angiogenesis of MSCs. Our data indicated that miR-146a-transfected hMSCs (hMSCmiR-146a) decreased the expression of neurofibromin 2, an inhibitor of p21-activated kinase-1 (PAK1). miR-146a also increased the expression of Ras-related C3 botulinum toxin substrate 1 and PAK1, which are known to induce VEGF expression, and the formation of vascular branches was increased in hMSCmiR-146a compared to hMSCs treated with VEGF. VEGF and p-Akt were increased in hMSCmiR-146a. Furthermore, injection of hMSCmiR-146a after ischemia/reperfusion (I/R) injury led to a reduction of fibrosis area and increased VEGF expression, confirming the regenerative capacity such as reparative angiogenesis in the infarcted area. Cardiac functions in I/R injury were improved following injection of hMSCmiR-146a compared to the I/R group. Taken together, these data suggest that miR-146 is a novel microRNA that regulates VEGF expression, and its use may be an effective strategy for enhancing the therapeutic efficacy of hMSC transplantation into the I/R-injured heart.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/cirugía , Daño por Reperfusión Miocárdica/cirugía , Miocardio/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Regiones no Traducidas 3' , Animales , Sitios de Unión , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Neovascularización Fisiológica , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Ratas Sprague-Dawley , Recuperación de la Función , Regeneración , Transducción de Señal , Transfección , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/metabolismo
7.
Int J Med Sci ; 14(9): 911-919, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824330

RESUMEN

Stromal vascular fractions (SVFs) are a heterogeneous collection of cells within adipose tissue that are being studied for various clinical indications. In this study, we aimed to determine whether SVF transplantation into impaired tissues has differential effects on inflammatory and angiogenetic properties with regard to gender. As reactive oxygen species have been implicated in cardiovascular disease development, we investigated differences in gene and protein expression related to inflammation and angiogenesis in HUVECs co-cultured with adipose-derived SVFs from male (M group) and female (F group) individuals under oxidative stress conditions. The expression of several inflammatory (interleukin (IL)-33) and angiogenetic (platelet-derived growth factor (PDGF)) factors differed dramatically between male and female donors. Anti-inflammatory and pro-angiogenetic responses were observed in HUVECs co-cultured with SVFs under oxidative stress conditions, and these characteristics may exhibit partially differential effects according to gender. Using network analysis, we showed that co-culturing HUVECs with SVFs ameliorated pyroptosis/apoptosis via an increase in oxidative stress. Activation of caspase-1 and IL-1B was significantly altered in HUVECs co-cultured with SVFs from female donors. These findings regarding gender-dimorphic regulation of adipose-derived SVFs provide valuable information that can be used for evidence-based gender-specific clinical treatment of SVF transplantation for understanding of cardiovascular disease, allowing for the development of additional treatment.


Asunto(s)
Inflamación/genética , Neovascularización Patológica/genética , Obesidad/genética , Estrés Oxidativo/genética , Células del Estroma/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Apoptosis/genética , Diferenciación Celular , Linaje de la Célula/genética , Técnicas de Cocultivo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/patología , Interleucina-33/genética , Masculino , Neovascularización Patológica/patología , Obesidad/patología , Factor de Crecimiento Derivado de Plaquetas , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Caracteres Sexuales , Células del Estroma/metabolismo
8.
Biol Res ; 50(1): 1, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100269

RESUMEN

BACKGROUND: Pathologic vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury promotes the development of occlusive vascular disease. Therefore, an effective chemical agent to suppress aberrant proliferation and migration of VSMCs can be a potential therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. To find an anti-proliferative chemical agent for VSMCs, we screened an in-house small molecule library, and the selected small molecule was further validated for its anti-proliferative effect on VSMCs using multiple approaches, such as cell proliferation assays, wound healing assays, transwell migration assays, and ex vivo aortic ring assay. RESULTS: Among 43 initially screened small molecule inhibitors of kinases that have no known anti-proliferative effect on VSMCs, a spleen tyrosine kinase (Syk) inhibitor (BAY61-3606) showed significant anti-proliferative effect on VSMCs. Further experiments indicated that BAY61 attenuated the VSMC proliferation in both concentration- and time-dependent manner, and it also significantly suppressed the migration of VSMCs as assessed by both wound healing assays and transwell assays. Additionally, BAY61 suppressed the sprouting of VSMCs from endothelium-removed aortic rings. CONCLUSION: The present study identified a Syk kinase inhibitor as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its underlying molecular mechanisms, such as its primary target, and to validate its in vivo efficacy as a therapeutic agent for restenosis and atherosclerosis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Niacinamida/análogos & derivados , Pirimidinas/farmacología , Quinasa Syk/antagonistas & inhibidores , Animales , Aorta Torácica/efectos de los fármacos , Western Blotting , Ensayos de Migración Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Músculo Liso Vascular/citología , Niacinamida/farmacología , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos
9.
Cell Physiol Biochem ; 39(4): 1595-607, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27627433

RESUMEN

BACKGROUND/AIMS: It is known that mesenchymal stem cells (MSCs) can have variable responses to hypoxic conditions and that hypoxia may specifically stimulate differentiation into osteogenic, chondrogenic, or adipogenic cells. Based on our previous study, we hypothesized that hypoxia may also induce MSC differentiation into cardiomyocytes and/or cells with comparable phenotypes. METHODS: The differences in the proteomes were specifically investigated in bone marrow-derived rat MSCs (BM-rMSCs) under normoxic and hypoxic conditions using 2-DE combined with a MALDI-TOF-MS analysis and western blot analysis. In addition, genetic and/or proteomic interactions were assessed using a String network analysis. RESULTS: Among the 35 markedly changed spots from a total of 393 matched spots, 24 were highly up-regulated and 11 were significantly down-regulated in hypoxic rMSCs based on a proteomic analysis. Although hypoxia failed to induce the direct differentiation of rMSCs into cardiomyocytes, several cardiomyocyte differentiation-related genes and proteins were significantly increased by hypoxic stress. CONCLUSION: We found that BM-rMSCs alter their expression of several cardiomyocyte differentiation-related genes and proteins under hypoxic conditions, and we examined the interactions between these genes and/or proteins, providing new insights for the applicability of MSCs preconditioned by hypoxic stimulation for use in cardiac diseases.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma/genética , Animales , Células de la Médula Ósea/citología , Hipoxia de la Célula , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Cultivo Primario de Células , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
10.
Cell Physiol Biochem ; 40(1-2): 400-410, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27866198

RESUMEN

BACKGROUND/AIMS: We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. METHODS: To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. RESULTS: The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO) Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. CONCLUSION: Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/efectos de los fármacos , Proteómica/métodos , Animales , Hipoxia de la Célula , Electroforesis en Gel Bidimensional , Redes Reguladoras de Genes , Células Madre Mesenquimatosas/efectos de los fármacos , Miocardio/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Tinción con Nitrato de Plata , Tropomiosina/metabolismo
11.
Bioorg Med Chem Lett ; 26(20): 5098-5102, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27614412

RESUMEN

The restoration of damaged articular cartilage is a long-pursued goal in regenerative medicine. Chondrocyte-specific differentiation of mesenchymal stem cells (MSCs) may be an effective means of repairing damaged cartilage. We identified small molecule 6 with sulfonamide as an agent that promotes specific chondrogenic differentiation of human adipose-derived MSCs (hASCs). Unlike other chondrogenic differentiation media composed of various defined components, simply adding compound 6 into culture medium was sufficient to induce chondrogenesis in this study. In an animal osteoarthritis model, both the small molecule 6 and the 6-treated hASCs exhibited enhanced recovery of injured articular cartilage. This work provides new insight into MSC differentiation induced by small molecules and potential new therapeutic approaches for articular cartilage injury.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Sulfonamidas/farmacología , Cartílago Articular/citología , Diferenciación Celular , Condrocitos/citología , Medios de Cultivo , Ensayo de Inmunoadsorción Enzimática , Humanos , Células Madre Mesenquimatosas/citología , Regeneración
12.
Int J Mol Sci ; 17(10)2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27775615

RESUMEN

Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.


Asunto(s)
Apoptosis/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Estrés Oxidativo/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Humanos , Infarto del Miocardio , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo
13.
J Cell Biochem ; 116(4): 648-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25399916

RESUMEN

Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.


Asunto(s)
Reestenosis Coronaria/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C-delta/metabolismo , Angiotensina II/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neointima/metabolismo , Fosforilación , Ratas
14.
J Cell Biochem ; 116(4): 598-608, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25389122

RESUMEN

The proliferation and migration of smooth muscle cells (SMCs) are considered to be key steps in the progression of atherosclerosis and restenosis. Certain stimuli, such as, interleukin-3 (IL-3) are known to stimulate proliferation and migration in vascular diseases. Meanwhile, microRNAs (miRs) have been revealed as critical modulators of various diseases in which miR-29b is known to regulate cell growth by targeting Mcl-1 and MMP2. However, roles of miR-29b in vascular smooth muscle cells remain almost unknown. We hypothesized that miR-29b may control the proliferation and migration processes induced by IL-3 stimulation by inhibiting its own specific targets in SMCs. MiR-29b significantly suppressed the proliferation and migration of SMCs through the inhibition of the signaling pathway related to Mcl-1 and MMP2. We also found that miR-29b expression levels significantly declined in balloon-injured rat carotid arteries and that the overexpression of miR-29b by local oligonucleotide delivery can inhibit neointimal formation. Consistent with the critical role of miR-29b in vitro, we observed down-regulated expression levels of Mcl-1 and MMP2 from the neointimal region. These results indicate that miR-29b suppressed the proliferation and migration of SMCs, possibly through the inhibition of Mcl-1 and MMP2, and suggest that miR-29b may serve as a useful therapeutic tool to treat cardiovascular diseases such as, atherosclerosis and restenosis.


Asunto(s)
Traumatismos de las Arterias Carótidas/genética , Interleucina-3/farmacología , MicroARNs/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Neointima/genética , Animales , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Miocitos del Músculo Liso/citología , Ratas , Ratas Sprague-Dawley
15.
Biochem Biophys Res Commun ; 465(2): 299-304, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26265044

RESUMEN

Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent.


Asunto(s)
Apoptosis/genética , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosomas/efectos de los fármacos , Apoptosomas/genética , Factor Apoptótico 1 Activador de Proteasas/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Norepinefrina/farmacología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Transfección
16.
Biochem Biophys Res Commun ; 460(4): 931-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25839659

RESUMEN

During ischemia-reperfusion (IR) injury of the heart, Ca(2+) overload occurs, leading to cardiomyocyte dysfunction and eventual cell death by apoptosis. Since preventing Ca(2+) overload during IR injury has been reported to protect cardiomyocytes, interrupting Ca(2+) signaling cascades leading to Ca(2+) overload may exert protective effect on cardiomyocytes under hypoxic condition. One of the key regulators of the intracellular Ca(2+) level during IR injury is Na(+)-Ca(2+) exchanger 1 (NCX1), whose down-regulation during IR injury conferred protection of heart. In the present study, we examined whether down-regulation of NCX1 using exogenous microRNA ameliorates apoptosis of cardiomyocytes under hypoxic condition. Here, we identified miR-132 as a novel microRNA targeting the NCX1, whose expression increased during hypoxia. Delivery of miR-132 suppressed the increase of intracellular Ca(2+) in cardiomyocytes under hypoxia, and the expressions of apoptotic molecules, such as Bax, cytochrome C, and caspase 3, and the number of apoptotic cells were also decreased by exogenous miR-132 treatment. These results suggest the potential of miR-132 as an effective therapeutic agent against IR damage to heart by preventing Ca(2+) overload during hypoxic condition and warrant further studies to validate its anti-apoptotic effect in vivo.


Asunto(s)
Apoptosis , Calcio/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Células Cultivadas , Miocitos Cardíacos/citología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Biochem Biophys Res Commun ; 465(3): 349-55, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26253469

RESUMEN

Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transactivadores/metabolismo , Animales , Apoptosis , Cardiomegalia/genética , Células Cultivadas , Regulación de la Expresión Génica/genética , Insuficiencia Cardíaca/genética , MicroARNs/genética , Proteínas Nucleares/genética , Ratas , Ratas Sprague-Dawley , Transactivadores/genética
18.
Biol Res ; 48: 45, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283227

RESUMEN

BACKGROUND: Low survival rate of transplanted cells compromises the efficacy of cell therapy. Hexokinase II (HKII) is known to have anti-apoptotic activity through its interaction with mitochondria. The objective was to identify miRNAs targeting HKII and investigate whether miRNA-mediated modulation of HKII could improve the survival of mesenchymal stem cells (MSCs) exposed to H2O2. The expression of HKII in MSCs exposed to H2O2 was evaluated, and HKII-targeting miRNA was screened based on miRNA-target prediction databases. The effect of H2O2 on the expression of the selected HKII-targeting miRNA was examined and the effect of modulation of the selected HKII-targeting miRNA using anti-miRNA on H2O2-induced apoptosis of MSC was evaluated. RESULTS: H2O2 (600 µM) induced cell death of MSCs and decreased mitochondrial HKII expression. We have identified miR-181a as a HKII-targeting miRNA and H2O2 increased the expression of miR-181a in MSCs. Delivery of anti-miR-181a, which neutralizes endogenous miR-181a, significantly attenuated H2O2-induced decrease of HKII expression and disruption of mitochondrial membrane potential, improving the survival of MSCs exposed to H2O2. CONCLUSIONS: These findings suggest that H2O2-induced up-regulation of miR-181a contributes to the cell death of MSCs by down-regulating HKII. Neutralizing miR-181a can be an effective way to prime MSCs for transplantation into ischemic tissues.


Asunto(s)
Apoptosis , Glioma/patología , Hexoquinasa/metabolismo , Peróxido de Hidrógeno/toxicidad , Células Madre Mesenquimatosas/patología , MicroARNs/metabolismo , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Glioma/metabolismo , Humanos , Peróxido de Hidrógeno/administración & dosificación , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , MicroARNs/antagonistas & inhibidores , Mitocondrias/enzimología , Invasividad Neoplásica , Especies Reactivas de Oxígeno , Reacción en Cadena en Tiempo Real de la Polimerasa , Semaforinas/genética , Semaforinas/metabolismo
19.
J Cell Biochem ; 115(10): 1752-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24819721

RESUMEN

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of disease progression in atherosclerosis. Cell proliferation is regulated by cell cycle regulatory proteins. MicroRNAs (miR) have been reported to act as important gene regulators and play essential roles in the proliferation and migration of VSMCs in a cardiovascular disease. However, the roles and mechanisms of miRs in VSMCs and neointimal formation are far from being fully understood. In this study, cell cycle-specific cyclin D1 was found to be a potential target of miR-365 by direct binding. Through an in vitro experiment, we showed that exogenous miR-365 overexpression reduced VSMC proliferation and proliferating cell nuclear antigen (PCNA) expression, while miR-365 was observed to block G1/S transition in platelet-derived growth factor-bb (PDGF-bb)-induced VSMCs. In addition, the proliferation of VSMCs by various stimuli, including PDGF-bb, angiotensin II (Ang II), and serum, led to the downregulation of miR-365 expression levels. The expression of miR-365 was confirmed in balloon-injured carotid arteries. Taken together, our results suggest an anti-proliferative role for miR-365 in VSMC proliferation, at least partly via modulating the expression of cyclin D1. Therefore, miR-365 may influence neointimal formation in atherosclerosis patients.


Asunto(s)
Aterosclerosis/patología , Ciclina D1/biosíntesis , MicroARNs/genética , Músculo Liso Vascular/crecimiento & desarrollo , Neointima/genética , Angiotensina II/farmacología , Animales , Becaplermina , Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , División Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo , MicroARNs/biosíntesis , Músculo Liso Vascular/citología , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Unión Proteica , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteínas de Unión al ARN , Ratas , Puntos de Control de la Fase S del Ciclo Celular/genética
20.
Biochem Biophys Res Commun ; 435(4): 720-6, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23702479

RESUMEN

A change in intracellular free calcium (Ca(2+)) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca(2+) signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca(2+)-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H2O2-mediated Ca(2+) overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca(2+) overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca(2+)-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca(2+) overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , MicroARNs/farmacología , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA