Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39143856

RESUMEN

Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.


Asunto(s)
Células Endoteliales , Uniones Intercelulares , Mecanotransducción Celular , Estrés Mecánico , Humanos , Uniones Intercelulares/metabolismo , Células Endoteliales/metabolismo , Animales , Resistencia al Corte , Adhesión Celular/fisiología
2.
Circ Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234692

RESUMEN

BACKGROUND: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 and LIPG to increase fatty acid beta-oxidation. CONCLUSIONS: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.

3.
Arterioscler Thromb Vasc Biol ; 43(4): 547-561, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794585

RESUMEN

BACKGROUND: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Humanos , Ratones , Apoptosis , Aterosclerosis/patología , Autofagia , Endotelio/metabolismo , Porcinos , Pez Cebra/genética
4.
J Cell Sci ; 132(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31076511

RESUMEN

Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that ß1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. ß1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and ß1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that ß1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, ß1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aorta/fisiología , Integrina beta1/metabolismo , Flujo Sanguíneo Regional/fisiología , Animales , Línea Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina beta1/genética , Mecanorreceptores/fisiología , Ratones , Ratones Noqueados , Estrés Fisiológico/fisiología
5.
Cardiovasc Drugs Ther ; 33(2): 231-237, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30809744

RESUMEN

BACKGROUND: Endothelial cell (EC) dysfunction (enhanced inflammation, proliferation and permeability) is the initial trigger for atherosclerosis. Atherosclerosis shows preferential development near branches and bends exposed to disturbed blood flow. By contrast, sites that are exposed to non-disturbed blood flow are atheroprotected. Disturbed flow promotes atherosclerosis by promoting EC dysfunction. Blood flow controls EC function through transcriptional and post-transcriptional mechanisms that are incompletely understood. METHODS AND RESULTS: We identified the developmental transcription factors Twist1 and GATA4 as being enriched in EC at disturbed flow, atheroprone regions of the porcine aorta in a microarray study. Further work using the porcine and murine aortae demonstrated that Twist1 and GATA4 expression was enhanced at the atheroprone, disturbed flow sites in vivo. Using controlled in vitro flow systems, the expression of Twist1 and GATA4 was enhanced under disturbed compared to non-disturbed flow in cultured cells. Disturbed flow promoted Twist1 expression through a GATA4-mediated transcriptional mechanism as revealed by a series of in vivo and in vitro studies. GATA4-Twist1 signalling promoted EC proliferation, inflammation, permeability and endothelial-to-mesenchymal transition (EndoMT) under disturbed flow, leading to atherosclerosis development, as shown in a combination of in vitro and in vivo studies using GATA4 and Twist1-specific siRNA and EC-specific GATA4 and Twist1 Knock out (KO) mice. CONCLUSIONS: We revealed that GATA4-Twist1-Snail signalling triggers EC dysfunction and atherosclerosis; this work could lead to the development of novel anti-atherosclerosis therapeutics.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Factor de Transcripción GATA4/metabolismo , Mecanotransducción Celular , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Arterias/patología , Arterias/fisiopatología , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Transición Epitelial-Mesenquimal , Humanos , Placa Aterosclerótica , Flujo Sanguíneo Regional
6.
Circ Res ; 119(3): 450-62, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27245171

RESUMEN

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Asunto(s)
Aterosclerosis/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/metabolismo , Proteínas Nucleares/biosíntesis , Proteína 1 Relacionada con Twist/biosíntesis , Animales , Aterosclerosis/patología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Porcinos , Pez Cebra
7.
Arterioscler Thromb Vasc Biol ; 37(1): 130-143, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834691

RESUMEN

OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.


Asunto(s)
Apoptosis , Aterosclerosis/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Células Cultivadas , Embrión no Mamífero/irrigación sanguínea , Células Endoteliales/patología , Femenino , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Fenotipo , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Porcinos , Transcriptoma , Transfección , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
8.
Nature ; 480(7376): 201-8, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22139419

RESUMEN

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.


Asunto(s)
Plaquetas/citología , Hematopoyesis/genética , Megacariocitos/citología , Animales , Plaquetas/metabolismo , Tamaño de la Célula , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Europa (Continente) , Perfilación de la Expresión Génica , Silenciador del Gen , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Megacariocitos/metabolismo , Recuento de Plaquetas , Mapas de Interacción de Proteínas , Transcripción Genética/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
PLoS Genet ; 10(7): e1004450, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010335

RESUMEN

The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits.


Asunto(s)
Diferenciación Celular/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Animales , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Pez Cebra/sangre
10.
Arterioscler Thromb Vasc Biol ; 34(10): 2199-205, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24947523

RESUMEN

Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular inflammation; high uniform shear stress prevents leukocyte recruitment to the vascular wall by reducing endothelial expression of adhesion molecules and other inflammatory proteins, whereas low oscillatory shear stress has the opposite effects. Here, we review the molecular mechanisms that underpin the effects of shear stress on endothelial inflammatory responses. They include shear stress regulation of inflammatory mitogen-activated protein kinase and nuclear factor-κB signaling. High shear suppresses these pathways through the induction of several negative regulators of inflammation, whereas low shear promotes inflammatory signaling. Furthermore, we summarize recent studies indicating that inflammatory signaling is highly sensitive to pulse wave frequencies, magnitude, and direction of flow. Finally, the importance of systems biology approaches (including omics studies and functional screening) to identify novel mechanosensitive pathways is discussed.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/patología , Endotelio Vascular/patología , Inflamación/patología , Mecanotransducción Celular , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Regulación de la Expresión Génica , Hemodinámica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Flujo Sanguíneo Regional , Estrés Mecánico
11.
Arterioscler Thromb Vasc Biol ; 33(6): 1257-63, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23559631

RESUMEN

OBJECTIVE: Coarctation of the aorta is rarely associated with known gene defects. Blomstrand chondrodysplasia, caused by mutations in the parathyroid hormone receptor 1 (PTHR1) is associated with coarctation of the aorta in some cases, although it is unclear whether PTHR1 deficiency causes coarctation of the aorta directly. The zebrafish allows the study of vascular development using approaches not possible in other models. We therefore examined the effect of loss of function of PTHR1 or its ligand parathyroid hormone-related peptide (PTHrP) on aortic formation in zebrafish. APPROACH AND RESULTS: Morpholino antisense oligonucleotide knockdown of either PTHR1 or PTHrP led to a localized occlusion of the mid-aorta in developing zebrafish. Confocal imaging of transgenic embryos showed that these defects were caused by loss of endothelium, rather than failure to lumenize. Using a Notch reporter transgenic ([CSL:Venus]qmc61), we found both PTHR1 and PTHrP knockdown-induced defective Notch signaling in the hypochord at the site of the aortic defect before onset of circulation, and the aortic occlusion was rescued by inducible Notch upregulation. CONCLUSIONS: Loss of function of either PTHR1 or PTHrP leads to a localized aortic defect that is Notch dependent. These findings may underlie the aortic defect seen in Blomstrand chondrodysplasia, and reveal a link between parathyroid hormone and Notch signaling during aortic development.


Asunto(s)
Aorta/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Receptor Notch1/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Animales , Coartación Aórtica/genética , Coartación Aórtica/fisiopatología , Femenino , Masculino , Modelos Animales , Mutación/genética , Neovascularización Fisiológica/genética , Valores de Referencia , Regulación hacia Arriba , Pez Cebra
12.
Blood ; 118(18): 4967-76, 2011 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21715309

RESUMEN

Genomewide association meta-analysis studies have identified > 100 independent genetic loci associated with blood cell indices, including volume and count of platelets and erythrocytes. Although several of these loci encode known regulators of hematopoiesis, the mechanism by which most sequence variants exert their effect on blood cell formation remains elusive. An example is the Rho guanine nucleotide exchange factor, ARHGEF3, which was previously implicated by genomewide association meta-analysis studies in bone cell biology. Here, we report on the unexpected role of ARHGEF3 in regulation of iron uptake and erythroid cell maturation. Although early erythroid differentiation progressed normally, silencing of arhgef3 in Danio rerio resulted in microcytic and hypochromic anemia. This was rescued by intracellular supplementation of iron, showing that arhgef3-depleted erythroid cells are fully capable of hemoglobinization. Disruption of the arhgef3 target, RhoA, also produced severe anemia, which was, again, corrected by iron injection. Moreover, silencing of ARHGEF3 in erythromyeloblastoid cells K562 showed that the uptake of transferrin was severely impaired. Taken together, this is the first study to provide evidence for ARHGEF3 being a regulator of transferrin uptake in erythroid cells, through activation of RHOA.


Asunto(s)
Silenciador del Gen/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Hierro/metabolismo , Anemia Ferropénica/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Embrión no Mamífero , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Humanos , Células K562 , Redes y Vías Metabólicas/genética , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/fisiología , Factores de Intercambio de Guanina Nucleótido Rho , Pez Cebra , Proteína de Unión al GTP rhoA/metabolismo
13.
Vascul Pharmacol ; 150: 107178, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37137436

RESUMEN

Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.


Asunto(s)
Aterosclerosis , Vasos Coronarios , Células Endoteliales , Animales , Ratones , Humanos , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Aterosclerosis/metabolismo , Masculino
14.
Br J Pharmacol ; 179(5): 900-917, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788282

RESUMEN

Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Accidente Cerebrovascular , Envejecimiento , Animales , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Mamíferos , Porcinos , Pez Cebra
15.
Sci Adv ; 8(35): eabo7958, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044575

RESUMEN

Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , Porcinos
16.
Haematologica ; 96(2): 190-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21048033

RESUMEN

BACKGROUND: The Meis1 protein represents an important cofactor for Hox and Pbx1 and is implicated in human and murine leukemias. Though much is known about the role of meis1 in leukemogenesis, its function in normal hematopoiesis remains largely unclear. Here we characterized the role of the proto-oncogene, meis1, during zebrafish primitive and definitive hematopoiesis. DESIGN AND METHODS: Zebrafish embryos were stained with o-dianisidine to detect hemoglobin-containing cells and Sudan black to quantify neutrophils. The numbers of other cells (scl-, gata1- and alas2-positive cells) were also quantified by measuring the corresponding stained areas of the embryos. We used anti-Meis1 antibody and whole mount immunohistochemistry to determine the pattern of expression of Meis1 during zebrafish development and then analyzed the functional role of Meis1 by knocking-down the meis1 gene. RESULTS: Using antisense morpholino oligomers to interrupt meis1 expression we found that, although primitive macrophage development could occur unhampered, posterior erythroid differentiation required meis1, and its absence resulted in a severe decrease in the number of mature erythrocytes. Furthermore a picture emerged that meis1 exerts important effects on later stages of erythrocyte maturation and that these effects are independent of gata1, but under the control of scl. In addition, meis1 morpholino knock-down led to dramatic single arteriovenous tube formation. We also found that knock-down of pbx1 resulted in a phenotype that was strikingly similar to that of meis1 knock-down zebrafish. CONCLUSIONS: These results imply that meis1, jointly with pbx1, regulates primitive hematopoiesis as well as vascular development.


Asunto(s)
Embrión no Mamífero/metabolismo , Eritrocitos/citología , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Proteínas de Homeodominio/fisiología , Proteínas de Neoplasias/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/crecimiento & desarrollo , Animales , Diferenciación Celular , Embrión no Mamífero/citología , Eritrocitos/metabolismo , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Macrófagos/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Neutrófilos/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Proto-Oncogenes Mas , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
17.
F1000Res ; 10: 1032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36846519

RESUMEN

Introduction: Endothelial cell (EC) proliferation is a fundamental determinant of vascular development and homeostasis, and contributes to cardiovascular disease by increasing vascular permeability to blood-borne lipoproteins. Rodents have been traditionally used to analyse EC proliferation mechanisms in vascular health and disease; however, alternative models such as the zebrafish embryo allow researchers to conduct small scale screening studies in a physiologically relevant vasculature whilst reducing the use of mammals in biomedical research. In vitro models of EC proliferation are valuable but do not fully recapitulate the complexity of the in vivo situation. Several groups have used zebrafish embryos for vascular biology research because they offer the advantages of an in vivo model in terms of complexity but are also genetically manipulable and optically transparent. Methods: Here we investigated whether zebrafish embryos can provide a suitable model for the study of EC proliferation. We explored the use of antibody, DNA labelling, and time-lapse imaging approaches. Results: Antibody and DNA labelling approaches were of limited use in zebrafish due to the low rate of EC proliferation combined with the relatively narrow window of time in which they can label proliferating nuclei. By contrast, time-lapse imaging of fluorescent proteins localised to endothelial nuclei was a sensitive method to quantify EC proliferation in zebrafish embryos. Discussion: We conclude that time-lapse imaging is suitable for analysis of endothelial cell proliferation in zebrafish, and that this method is capable of capturing more instances of EC proliferation than immunostaining or cell labelling alternatives. This approach is relevant to anyone studying endothelial cell proliferation for screening genes or small molecules involved in EC proliferation. It offers greater biological relevance than existing in vitro models such as HUVECs culture, whilst reducing the overall number of animals used for this type of research.


Asunto(s)
Mamíferos , Pez Cebra , Animales , Pez Cebra/genética , Animales Modificados Genéticamente , Proliferación Celular
18.
Vasc Biol ; 3(1): 1-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522840

RESUMEN

The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and EC number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds.

19.
Nat Rev Cardiol ; 17(1): 52-63, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31366922

RESUMEN

Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFß, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.


Asunto(s)
Aterosclerosis/genética , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Endotelio Vascular/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Neovascularización Fisiológica/genética , Fenotipo , Flujo Sanguíneo Regional , Factores de Riesgo , Estrés Mecánico , Remodelación Vascular/genética
20.
Sci Rep ; 10(1): 3870, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32099026

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA