Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 121: 285-294, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35007747

RESUMEN

Stimulation of the fish immune system using immunostimulants is an environmentally friendly strategy to minimize bacterial outbreaks in aquaculture. Different biological and synthetic immunostimulants can enhance non-specific innate immune responses by directly activating immune cells. An example are Bacillus spp., known for their immunostimulatory effects, although the exact mechanisms by which Bacillus spp. offer protection against diseases remains to be elucidated. Furthermore, most studies have focused on Bacillus spp. cells, while the immunostimulant effect of their extracellular metabolome, known to harbour biologically important metabolites, including antimicrobial molecules, has been scarcely evaluated. Here, we evaluated the in vitro immune-modulatory properties of extracellular extracts of three Bacillus spp. strains (B. subtilis FI314, B. vezelensis FI436 and B. pumilus FI464), previously isolated from fish-guts and characterized for their in vitro and in vivo antimicrobial activity against a wide range of fish pathogens. Bacillus spp. extracellular extracts did not affect immune cells viability, but remarkably increased pathogens' phagocytosis when seabream head-kidney leukocytes were challenged with Vibrio anguillarum and Edwardsiella tarda. All extracts significantly increased the engulfment of bacterial pathogens 1 h post-infection. Cells stimulated with the extracellular extracts showed an up-regulation of the expression of immune-relevant genes associated with inflammation, including IL-1ß, IL-6, and COX-2. In cells challenged with E. tarda, FI314 extracellular extract significantly increased the expression of IL-1ß, IL-6, and COX-2, while FI436 and FI464 significantly increased IL-6 expression. The results of this study revealed that the extracellular molecules from Bacillus spp. fish isolates improved the in vitro response of gilthead seabream immune cells and are thus promising candidates to act as immunostimulants, helping fish fight diseases.


Asunto(s)
Bacillus , Enfermedades de los Peces , Leucocitos/inmunología , Dorada , Adyuvantes Inmunológicos , Animales , Bacillus/química , Ciclooxigenasa 2/genética , Interleucina-1beta/genética , Interleucina-6/genética , Dorada/inmunología
2.
Fish Shellfish Immunol ; 128: 695-702, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35981702

RESUMEN

Adjuvants that would help optimize fish vaccines against bacterial and viral pathogens are highly demanded by the aquaculture sector. Flagellin has been proposed as an immunostimulant and an adjuvant for more than a decade. However, the adjuvant ability of flagellins with hypervariable region deleted is still unclear in fish. In this study, we evaluated the immune-stimulating capacity of two recombinant flagellins, the wild-type flagellin F from Marinobacter algicola and a version with the hypervariable region deleted (FredV2), to induce the transcription of a wide range of immune genes using two rainbow trout cell lines: a monocyte/macrophage-cell line (RTS-11) and an epithelial cell line from intestine (RTgutGC). Additionally, we studied the capacity of both flagellins to limit the replication of viral hemorrhagic septicemia virus (VHSV) on the RTgutGC cell line. Our results demonstrated that both recombinant flagellins can significantly increase the transcription of IL-1ß1, IL-6, and IL-8 in both cell lines. However, other cytokines such as IFNγ1, and TNFα or antimicrobial peptides such as hepcidin were induced by both flagellins in RTgutGC but not in RTS-11 cells. Furthermore, both flagellins were capable of reducing the replication of VHSV in RTgutGC cells. Although the immunostimulatory and the antiviral capacities exerted by F were slightly more potent than those obtained with FredV2, the effects were retained after losing the hypervariable region. Our results provide new information on the immunostimulating and antiviral capacities of flagellins that point to their potential as suitable adjuvants for the future optimization of vaccines in aquaculture.


Asunto(s)
Septicemia Hemorrágica Viral , Novirhabdovirus , Oncorhynchus mykiss , Adyuvantes Inmunológicos/farmacología , Animales , Antivirales , Citocinas/genética , Flagelina/farmacología , Hepcidinas , Interleucina-6 , Interleucina-8 , Marinobacter , Factor de Necrosis Tumoral alfa
3.
Mar Drugs ; 19(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34822473

RESUMEN

The disruption of pathogen communication or quorum-sensing (QS) via quorum-quenching (QQ) molecules has been proposed as a promising strategy to fight bacterial infections. Bacillus spp. have recognizable biotechnology applications, namely as probiotic health-promoting agents or as a source of natural antimicrobial molecules, including QQ molecules. This study characterized the QQ potential of 200 Bacillus spp., isolated from the gut of different aquaculture fish species, to suppress fish pathogens QS. Approximately 12% of the tested Bacillus spp. fish isolates (FI). were able to interfere with synthetic QS molecules. Ten isolates were further selected as producers of extracellular QQ-molecules and their QQ capacity was evaluated against the QS of important aquaculture bacterial pathogens, namely Aeromonas spp., Vibrio spp., Photobacterium damselae, Edwardsiela tarda, and Shigella sonnei. The results revealed that A. veronii and E. tarda produce QS molecules that are detectable by the Chr. violaceum biosensor, and which were degraded when exposed to the extracellular extracts of three FI isolates. Moreover, the same isolates, identified as B. subtilis, B. vezelensis, and B. pumilus, significantly reduced the pathogenicity of E. tarda in zebrafish larvae, increasing its survival by 50%. Taken together, these results identified three Bacillus spp. capable of extracellularly quenching aquaculture pathogen communication, and thus become a promising source of bioactive molecules for use in the biocontrol of aquaculture bacterial diseases.


Asunto(s)
Bacillus , Edwardsiella tarda , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/prevención & control , Peces , Probióticos , Animales , Acuicultura , Organismos Acuáticos , Infecciones por Enterobacteriaceae/prevención & control , Percepción de Quorum/efectos de los fármacos
4.
Fish Physiol Biochem ; 45(2): 681-695, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30367427

RESUMEN

For an increased incorporation of plant ingredients in aquafeeds at the expense of fish meal (FM) and fish oil (FO), more knowledge is needed on the effects at the intestine level of dietary vegetable oils (VO) and carbohydrates (CH), and of possible interactions. For that purpose, in this study, the activities of digestive pancreatic enzymes (amylase, lipase, total alkaline proteases), gut microbiota, and histomorphology were assessed in gilthead sea bream (IBW 71.0 ± 1.5 g) fed four diets differing in lipid source (FO or a blend of VO) and carbohydrate content (0% or 20% gelatinized starch) for 81 days. No major changes in digestive enzyme activities were noticed in fish fed the experimental diets. Dietary VO, but not CH content, modified intestinal microbial profile, by increasing the similarity of bacterial communities. Especially when combined with CH, dietary VO promoted abnormal enterocyte architecture. Liver histology was also accessed, and an increased cytoplasmic vacuolization of hepatocytes was related with dietary CH inclusion, being only significantly different in fish fed FO-based diets. Overall, nutritional interactions between dietary lipid source and carbohydrate content were not observed on digestive enzyme activities and microbial profile. However, the intestine histological modifications observed in fish fed the VOCH+ diet suggest a negative interaction between dietary VO and CH. This requires a more in depth assessment in future studies as it can have negative consequences at a functional level.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Aceites de Plantas/farmacología , Dorada/crecimiento & desarrollo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Dieta/veterinaria , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Intestinos/enzimología , Aceites de Plantas/administración & dosificación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Distribución Aleatoria
5.
Food Microbiol ; 74: 1-10, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29706322

RESUMEN

Probiotics benefits in fish farming have been usually inferred appraising the effects observed on the host and not through the direct assessment of probiotic dynamics in the host gut microbiota. To overcome this gap, quantitative PCR (qPCR) can be a powerful approach to study the bacterial dynamics in fish gut microbiota. The presented work proposes four B. licheniformis-specific DNA markers and details a qPCR method to track putative probiotics B. licheniformis on fish gut. The four B. licheniformis-specific DNA markers - BL5B (hypothetical protein BL00303), BL8A (serA2), BL13C (rfaB) and BL18A (ligD) - were selected and validated by PCR and multiplex-PCR with 20 B. licheniformis isolates and a broad range of non-target bacteria. To assess the dynamics of B. licheniformis in the digesta of farmed fish, a qPCR was validated using markers BL8A and BL18A and calibration curves obtained for both markers with digesta samples spiked with B. licheniformis cells showed a high correlation (R2 > 0.99) over 6 log units (CFU/reaction), and a limit of detection (LOD) as low as 247 CFUs/reaction. Furthermore, the consistent qPCR repeatability and reproducibility underline the specificity and reliability of the qPCR proposed. Ultimately, the possibility to monitor the dynamics of B. licheniformis probiotics in the gut microbiota of farmed fish might be instrumental to optimize best practices in aquaculture.


Asunto(s)
Bacillus licheniformis/aislamiento & purificación , Peces/microbiología , Marcadores Genéticos/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Probióticos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , Bacillus licheniformis/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Recuento de Colonia Microbiana , ADN Bacteriano/genética , Explotaciones Pesqueras , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Probióticos/análisis , ARN Ribosómico 16S/genética
6.
Fish Shellfish Immunol ; 49: 122-31, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721230

RESUMEN

The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets.


Asunto(s)
Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Oligosacáridos/farmacología , Dorada/inmunología , Dorada/microbiología , Alimentación Animal/análisis , Animales , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/enzimología , Pruebas Hematológicas/veterinaria , Prebióticos/análisis , Dorada/metabolismo , Temperatura
7.
Fish Physiol Biochem ; 42(1): 203-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26364216

RESUMEN

The impact of replacing circa 70% fish oil (FO) by a vegetable oil (VO) blend (rapeseed, linseed, palm oils; 20:50:30) in diets for European sea bass juveniles (IBW 96 ± 0.8 g) was evaluated in terms of activities of digestive enzymes (amylase, lipase, alkaline phosphatase, trypsin and total alkaline proteases) in the anterior (AI) and posterior (PI) intestine and tissue morphology (pyloric caeca-PC, AI, PI, distal intestine-DI and liver). For that purpose, fish were fed the experimental diets for 36 days and then liver and intestine were sampled at 2, 6 and 24 h after the last meal. Alkaline protease characterization was also done in AI and PI at 6 h post-feeding. Dietary VO promoted higher alkaline phosphatase activity at 2 h post-feeding in the AI and at all sampling points in the PI. Total alkaline protease activity was higher at 6 h post-feeding in the PI of fish fed the FO diet. Identical number of bands was observed in zymograms of alkaline proteases of fish fed both diets. No alterations in the histomorphology of PC, AI, PI or DI were noticed in fish fed the VO diets, while in the liver a tendency towards increased hepatocyte vacuolization due to lipid accumulation was observed. Overall, and with the exception of a higher intestine alkaline phosphatase activity, 70% FO replacement by a VO blend in diets for European sea bass resulted in no distinctive alterations on the postprandial pattern of digestive enzyme activities and intestine histomorphology.


Asunto(s)
Lubina , Grasas de la Dieta/farmacología , Proteínas de Peces/metabolismo , Hidrolasas/metabolismo , Intestinos/enzimología , Hígado/enzimología , Animales , Ácidos Grasos Monoinsaturados , Aceites de Pescado/farmacología , Intestinos/anatomía & histología , Aceite de Linaza/farmacología , Hígado/patología , Aceite de Palma , Aceites de Plantas/farmacología , Periodo Posprandial/fisiología , Aceite de Brassica napus
8.
J Bacteriol ; 196(23): 4184-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25225273

RESUMEN

Sporulation by Bacillus subtilis is a cell density-dependent response to nutrient deprivation. Central to the decision of entering sporulation is a phosphorelay, through which sensor kinases promote phosphorylation of Spo0A. The phosphorelay integrates both positive and negative signals, ensuring that sporulation, a time- and energy-consuming process that may bring an ecological cost, is only triggered should other adaptations fail. Here we report that a gastrointestinal isolate of B. subtilis sporulates with high efficiency during growth, bypassing the cell density, nutritional, and other signals that normally make sporulation a post-exponential-phase response. Sporulation during growth occurs because Spo0A is more active per cell and in a higher fraction of the population than in a laboratory strain. This in turn, is primarily caused by the absence from the gut strain of the genes rapE and rapK, coding for two aspartyl phosphatases that negatively modulate the flow of phosphoryl groups to Spo0A. We show, in line with recent results, that activation of Spo0A through the phosphorelay is the limiting step for sporulation initiation in the gut strain. Our results further suggest that the phosphorelay is tuned to favor sporulation during growth in gastrointestinal B. subtilis isolates, presumably as a form of survival and/or propagation in the gut environment.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Esporas Bacterianas/crecimiento & desarrollo , Bacillus subtilis/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Tracto Gastrointestinal/microbiología , Regulación Bacteriana de la Expresión Génica , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo
9.
Front Immunol ; 15: 1394501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774883

RESUMEN

Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.


Asunto(s)
Bacillus subtilis , Vesículas Extracelulares , Leucocitos , Oncorhynchus mykiss , Bazo , Animales , Bacillus subtilis/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Bazo/inmunología , Bazo/citología , Leucocitos/inmunología , Leucocitos/metabolismo , Probióticos/farmacología , Línea Celular , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inmunomodulación , Intestinos/inmunología
10.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37237897

RESUMEN

This study aimed to determine the effects of dietary inclusion of Tenebrio molitor larvae (yellow worms) meal (TM) on meagre fish (Argyrosomus regius) whole-body fatty acids (FA) profile and hepatic and intestine oxidative status. For that purpose, fish were fed for 9 weeks a fishmeal-based diet (control) or diets including 10%, 20%, or 30% TM. With the increase in dietary TM level, whole-body oleic acid, linoleic acid, monounsaturated FA, and n-6 polyunsaturated FA (PUFA) increased while saturated FA (SFA), n-3 PUFA, n-3 long chain-PUFA, SFA:PUFA ratio, n3:n6 ratio, and FA retention decreased. Hepatic superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PDH), and glutathione reductase (GR) activities increased and catalase (CAT) and glutathione peroxidase (GPX) activities decreased with dietary TM inclusion. Hepatic total and reduced glutathione were lower in fish fed 20% TM. Intestinal CAT activity and oxidized glutathione increased and GPX activity decreased with dietary TM inclusion. Intestine SOD, G6PDH, and GR activities increased and malondialdehyde concentration decreased in fish fed the diets with lower TM inclusion levels. Liver and intestine oxidative stress index and liver malondialdehyde concentration were unaffected by dietary TM. In conclusion, to avoid major whole-body FA changes or antioxidant status imbalances, it is recommended to limit TM to 10% inclusion in meagre diets.

11.
Microorganisms ; 11(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37764049

RESUMEN

Disease outbreaks are a common problem in aquaculture, with serious economic consequences to the sector. Some of the most important bacterial diseases affecting aquaculture are caused by Gram-negative bacteria including Vibrio spp. (vibriosis), Photobacterium damselae (photobacteriosis), Aeromonas spp. (furunculosis; haemorrhagic septicaemia) or Tenacibaculum maritimum (tenacibaculosis). Lipopolysaccharides (LPS) are important components of the outer membrane of Gram-negative bacteria and have been linked to strong immunogenic responses in terrestrial vertebrates, playing a role in disease development. To evaluate LPS effects in fish, we used a hot-phenol procedure to extract LPS from common fish pathogens. A. hydrophila, V. harveyi, T. maritimum and P. damselae purified LPS were tested at different concentrations (50, 100, 250 and 500 µg mL-1) at 3 days post-fertilisation (dpf) Danio rerio larvae, for 5 days. While P. damselae LPS did not cause any mortality under all concentrations tested, A. hydrophila LPS induced 15.5% and V. harveyi LPS induced 58.3% of zebrafish larvae mortality at 500 µg mL-1. LPS from T. maritimum was revealed to be the deadliest, with a zebrafish larvae mortality percentage of 80.6%. Analysis of LPS separated by gel electrophoresis revealed differences in the overall LPS structure between the bacterial species analysed that might be the basis for the different mortalities observed.

12.
Biology (Basel) ; 11(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36101344

RESUMEN

Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.

13.
Front Microbiol ; 13: 831034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495644

RESUMEN

The aquaculture industry is one of the fastest-growing sectors in animal food production. However, farming of carnivorous fish strongly relies on the use of wild fish-based meals, a practice that is environmentally and economically unsustainable. Insect-based diets constitute a strong candidate for fishmeal substitution, due to their high nutritional value and low environmental footprint. Nevertheless, data on the impact of insect meal (IM) on the gut microbiome of farmed fish are so far inconclusive, and very scarce in what concerns modulation of microbial-mediated functions. Here we use high-throughput 16S rRNA gene amplicon sequencing and quantitative PCR to evaluate the impact of different IMs on the composition and chitinolytic potential of the European sea bass gut digesta- and mucosa-associated communities. Our results show that insect-based diets of distinct origins differently impact the gut microbiota of the European sea bass (Dicentrarchus labrax). We detected clear modulatory effects of IM on the gut microbiota, which were more pronounced in the digesta, where communities differed considerably among the diets tested. Major community shifts were associated with the use of black soldier fly larvae (Hermetia illucens, HM) and pupal exuviae (HEM) feeds and were characterized by an increase in the relative abundance of the Firmicutes families Bacillaceae, Enterococcaceae, and Lachnospiraceae and the Actinobacteria family Actinomycetaceae, which all include taxa considered beneficial for fish health. Modulation of the digesta community by HEM was characterized by a sharp increase in Paenibacillus and a decrease of several Gammaproteobacteria and Bacteroidota members. In turn, a mealworm larvae-based diet (Tenebrio molitor, TM) had only a modest impact on microbiota composition. Further, using quantitative PCR, we demonstrate that shifts induced by HEM were accompanied by an increase in copy number of chitinase ChiA-encoding genes, predominantly originating from Paenibacillus species with effective chitinolytic activity. Our study reveals an HEM-driven increase in chitin-degrading taxa and associated chitinolytic activity, uncovering potential benefits of adopting exuviae-supplemented diets, a waste product of insect rearing, as a functional ingredient.

14.
Animals (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496753

RESUMEN

This study aimed to assess the effect of Hermetia illucens meal (HM) dietary inclusion on meagre oxidative status. Thus, fish were fed a fishmeal-based diet (CTR diet) and three other diets with increasing levels of HM inclusion, namely 10%, 20%, and 30% (diets HM10, HM20, and HM30, respectively). At the end of the trial, hepatic and intestine superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activities and malondialdehyde concentration were unaffected by the diet composition. Liver glutathione peroxidase activity was higher in the fish fed the HM20 diet than in the fish fed the CTR and HM30 diets, and glutathione reductase activity linearly increased with the dietary HM level. The hepatic total glutathione and reduced glutathione contents were significantly lower in fish fed the HM20 diet than in fish fed the CTR and HM10 diets. In the intestine, the oxidized glutathione (GSSG) content and oxidative stress index linearly increased with the increase in dietary HM level, with the GSSG content of fish fed the HM20 diet being significantly higher than of fish fed the CTR diet. In conclusion, 30% HM might be included in meagre diets without negatively affecting hepatic and intestine oxidative status.

15.
Front Immunol ; 13: 888311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720351

RESUMEN

Bacillus subtilis has been documented in the past years as an effective probiotic for different aquacultured species, with recognized beneficial effects on water quality, fish growth and immune status. Furthermore, its potential as a vaccine adjuvant has also been explored in different species. In the current work, we have used B. subtilis spores as delivery vehicles for the presentation of the VP2 protein from infectious pancreatic necrosis virus (IPNV). For this, the VP2 gene was amplified and translationally fused to the crust protein CotY. The successful expression of VP2 on the spores was confirmed by Western blot. We then compared the immunostimulatory potential of this VP2-expressing strain (CRS208) to that of the original B. subtilis strain (168) on rainbow trout (Oncorhynchus mykiss) leukocytes obtained from spleen, head kidney and the peritoneal cavity. Our results demonstrated that both strains significantly increased the percentage of IgM+ B cells and the number of IgM-secreting cells in all leukocyte cultures. Both strains also induced the transcription of a wide range of immune genes in these cultures, with small differences between them. Importantly, specific anti-IPNV antibodies were detected in fish intraperitoneally or orally vaccinated with the CRS208 strain. Altogether, our results demonstrate B. subtilis spores expressing foreign viral proteins retain their immunomodulatory potential while inducing a significant antibody response, thus constituting a promising vaccination strategy.


Asunto(s)
Infecciones por Birnaviridae , Enfermedades de los Peces , Virus de la Necrosis Pancreática Infecciosa , Oncorhynchus mykiss , Vacunas Virales , Animales , Formación de Anticuerpos , Bacillus subtilis , Inmunoglobulina M
16.
Microb Biotechnol ; 15(8): 2191-2207, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35419949

RESUMEN

Aquaculture has been one of the fastest-growing food industry sectors, expanding at the pace of consumers' demands. To promote safe and effective fish growth performance strategies, and to stimulate environmentally friendly solutions to protect fish against disease outbreaks, new approaches are needed to safeguard fish welfare, as well as farmers and consumers interests. Here, we tested the use of cyanobacterial extracellular vesicles (EVs) as a novel nanocarrier system of heterologous proteins for applications in fish. We started by incubating zebrafish larvae with Synechocystis sp. PCC6803 EVs, isolated from selected mutant strains with different cell envelope characteristics. Results show that Synechocystis EVs are biocompatible with fish larvae, regardless of their structural composition, as EVs neither induced fish mortality nor triggered significant inflammatory responses. We establish also that cyanobacteria are amenable to engineering heterologous protein expression and loading into EVs, for which we used the reporter sfGFP. Moreover, upon immersion treatment, we successfully demonstrate that sfGFP-loaded Synechocystis EVs accumulate in the gastrointestinal tract of zebrafish larvae. This work opens the possibility of using cyanobacterial EVs as a novel biotechnological tool in fish, with prospective applications in carrying proteins/enzymes, for example for modulating their nutritional status or stimulating specific adaptive immune responses.


Asunto(s)
Vesículas Extracelulares , Synechocystis , Animales , Biotecnología , Vesículas Extracelulares/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Pez Cebra
17.
Front Immunol ; 13: 1012301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311700

RESUMEN

Oral vaccines are highly demanded by the aquaculture sector, to allow mass delivery of antigens without using the expensive and labor-intensive injectable vaccines. These later require individual handling of fish, provoking stress-related mortalities. One possible strategy to create injection-free vaccine delivery vehicles is the use of bacterial spores, extremely resistant structures with wide biotechnological applications, including as probiotics, display systems, or adjuvants. Bacterial spores, in particular those of Bacillus subtilis, have been shown to behave as mucosal vaccine adjuvants in mice models. However, such technology has not been extensively explored against fish bacterial disease. In this study, we used a laboratory strain of B. subtilis, for which a variety of genetic manipulation tools are available, to display at its spores surface either a Vibrio antigenic protein, OmpK, or the green fluorescence protein, GFP. When previously vaccinated by immersion with the OmpK- carrying spores, zebrafish survival upon a bacterial challenge with V. anguillarum and V. parahaemolyticus, increased up to 50 - 90% depending on the pathogen targeted. Further, we were able to detect anti-GFP-antibodies in the serum of European seabass juveniles fed diets containing the GFP-carrying spores and anti-V. anguillarum antibodies in the serum of European seabass juveniles fed the OmpK-carrying spores containing diet. More important, seabass survival was increased from 60 to 86% when previously orally vaccinated with in-feed OmpK- carrying spores. Our results indicate that B. subtilis spores can effectively be used as antigen-carriers for oral vaccine delivery in fish.


Asunto(s)
Lubina , Enfermedades de los Peces , Vibriosis , Ratones , Animales , Vacunas Bacterianas , Pez Cebra , Vibriosis/prevención & control , Vibriosis/veterinaria , Esporas Bacterianas , Vacunación , Tecnología
18.
Front Immunol ; 12: 660448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790917

RESUMEN

The range of metabolic pathways that are dependent on a proper supply of specific amino acids (AA) unveils their importance in the support of health. AA play central roles in key pathways vital for immune support and individual AA supplementation has shown to be able to modulate fish immunity. In vitro trials are important tools to evaluate the immunomodulatory role of AA, and the present study was conceived to evaluate methionine and tryptophan roles in immune-related mechanisms aiming to understand their effects in leucocyte functioning and AA pathways. For that purpose, head-kidney leucocytes were isolated and a primary cell culture established. The effect of methionine or tryptophan surplus on cell viability was assessed. Medium L-15 10% FBS without AA addition (0.5mM of L-methionine, 0.1 mM of L-tryptophan) was used as control. To that, L-methionine or L-tryptophan were supplemented at 1 and 2 times (M1x or M2x, and T1x or T2x). Nitric oxide, ATP, total antioxidant capacity, and immune-related genes were evaluated in response to lipopolysaccharides extracted from Photobacterium damselae subsp. piscicida or UV-inactivated bacteria). Moreover, caspase 3 activity and apoptosis-related genes were evaluated in response to the apoptosis-inducing protein, AIP56. Distinct roles in leucocytes' immune response were observed, with contrasting outcomes in the modulation of individual pathways. Methionine surplus improved cell viability, polyamine production, and methionine-related genes expression in response to an inflammatory agent. Also, methionine supplementation lowered signals of apoptosis by AIP56, presenting lower caspase 3 activity and higher il1ß and nf-κb expression. Cells cultured in tryptophan supplemented medium presented signals of an attenuated inflammatory response, with decreased ATP and enhanced expression of anti-inflammatory and catabolism-related genes in macrophages. In response to AIP56, leucocytes cultured in a tryptophan-rich medium presented lower resilience to the toxin, higher caspase 3 activity and expression of caspase 8, and lower expression of several genes, including nf-κb and p65. This study showed the ability of methionine surplus to improve leucocytes' response to an inflammatory agent and to lower signals of apoptosis by AIP56 induction, while tryptophan attenuated several cellular signals of the inflammatory response to UV-inactivated bacteria and lowered leucocyte resilience to AIP56.


Asunto(s)
Apoptosis/efectos de los fármacos , Lubina/inmunología , Inmunidad Innata/efectos de los fármacos , Metionina/farmacología , Triptófano/farmacología , Animales , Células Cultivadas , Medios de Cultivo/química , Riñón Cefálico/citología , Inmunomodulación , Leucocitos/efectos de los fármacos , Lipopolisacáridos/farmacología , Photobacterium
19.
Sci Rep ; 11(1): 447, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432059

RESUMEN

A healthy gastrointestinal microbiota is essential for host fitness, and strongly modulated by host diet. In aquaculture, a current challenge is to feed carnivorous fish with plant-feedstuffs in substitution of fish meal, an unsustainable commodity. Plants have a limited nutritive value due to the presence of non-starch polysaccharides (NSP) which are not metabolized by fish. In this work we assessed the effects of NSP-enriched diets on European seabass gut microbiota and evaluate the selective pressure of plant feedstuffs towards gut microbes with NSP-hydrolytic potential, i.e. capable to convert indigestible dietary constituents in fish metabolites. Triplicate groups of European seabass juveniles were fed a fish meal-based diet (control) or three plant-based diets (SBM, soybean meal; RSM, rapeseed meal; SFM, sunflower meal) for 6 weeks, before recovering intestinal samples for microbiota analysis, using the Illumina's MiSeq platform. Plant-based diets impacted differently digesta and mucosal microbiota. A decrease (p = 0.020) on species richness, accompanied by a decline on the relative abundance of specific phyla such as Acidobacteria (p = 0.030), was observed in digesta samples of SBM and RSM experimental fish, but no effects were seen in mucosa-associated microbiota. Plant-based diets favored the Firmicutes (p = 0.01), in particular the Bacillaceae (p = 0.017) and Clostridiaceae (p = 0.007), two bacterial families known to harbor carbohydrate active enzymes and thus putatively more prone to grow in high NSP environments. Overall, bacterial gut communities of European seabass respond to plant-feedstuffs with adjustments in the presence of transient microorganisms (allochthonous) with carbohydrolytic potential, while maintaining a balanced core (autochthonous) microbiota.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Lubina/microbiología , Brassica napus , Microbioma Gastrointestinal , Glycine max , Helianthus , Animales , Bacillaceae , Lubina/fisiología , Carnivoría , Clostridiaceae
20.
Mar Biotechnol (NY) ; 23(2): 276-293, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33544251

RESUMEN

Aquaculture is responsible for more than 50% of global seafood consumption. Bacterial diseases are a major constraint to this sector and associated with misuse of antibiotics, pose serious threats to public health. Fish-symbionts, co-inhabitants of fish pathogens, might be a promising source of natural antimicrobial compounds (NACs) alternative to antibiotics, limiting bacterial diseases occurrence in aquafarms. In particular, sporeforming Bacillus spp. are known for their probiotic potential and production of NACs antagonistic of bacterial pathogens and are abundant in aquaculture fish guts. Harnessing the fish-gut microbial community potential, 172 sporeforming strains producing NACs were isolated from economically important aquaculture fish species, namely European seabass, gilthead seabream, and white seabream. We demonstrated that they possess anti-growth, anti-biofilm, or anti-quorum-sensing activities, to control bacterial infections and 52% of these isolates effectively antagonized important fish pathogens, including Aeromonas hydrophila, A. salmonicida, A. bivalvium, A. veronii, Vibrio anguillarum, V. harveyi, V. parahaemolyticus, V. vulnificus, Photobacterium damselae, Tenacibaculum maritimum, Edwardsiela tarda, and Shigella sonnei. By in vitro quantification of sporeformers' capacity to suppress growth and biofilm formation of fish pathogens, and by assessing their potential to interfere with pathogens communication, we identified three promising candidates to become probiotics or source of bioactive molecules to be used in aquaculture against bacterial aquaculture diseases.


Asunto(s)
Bacillus/química , Bacillus/aislamiento & purificación , Enfermedades de los Peces/microbiología , Microbioma Gastrointestinal , Animales , Antibacterianos , Acuicultura , Bacillus/clasificación , Infecciones Bacterianas/prevención & control , Lubina/microbiología , Biopelículas/efectos de los fármacos , Enfermedades de los Peces/prevención & control , Probióticos , Percepción de Quorum/efectos de los fármacos , Dorada/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA