RESUMEN
The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.
Asunto(s)
Bancos de Muestras Biológicas , Neoplasias de la Mama , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Biomarcadores Farmacológicos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Pruebas de Farmacogenómica , Células Tumorales CultivadasRESUMEN
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Asunto(s)
Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas , Humanos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Ciclo Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismoRESUMEN
Homologous recombination deficiency (HRD) assays are an important element of personalized oncology in ovarian carcinomas, but the optimal tissue requirements for these complex molecular assays remain unclear. As a result, a considerable percentage of assays are not successful, leading to suboptimal diagnoses for these patients. In this study, we have systematically analyzed tumor and tissue parameters for HRD analysis in a large cohort of real-world cancer samples. The aim of this study is to give recommendations for pathologists and gynecologic oncologists for selection of tissue samples to maximize the success rate of HRD analyses. Tumor samples from 2702 patients were sent to the Institute of Pathology of the Philipps-University Marburg between October 2020 and September 2022, of which 2654 were analyzed using the Myriad MyChoice HRD+ CDx assay. A total of 2396 of 2654 samples (90.3%) were successfully tested, of which 984 of 2396 (41.1%) were HRD positive and 1412 (58.9%) were HRD negative. Three hundred sixty-three of 2396 samples (15.2%) were BRCA1/2-mutated; 27 samples had a BRCA1/2 mutation and a genomic instability score (GIS) < 42. Twenty-two samples (0.9%) failed GIS measurement but displayed a BRCA1/2 mutation. BRCA1/2-mutated samples showed significantly (P < .0001) higher GIS values than those with a wild-type BRCA1/2 status. Tumor cell content, tumor area, and histology significantly (P < .0001) affected the probability of successfully analyzing a sample. Based on a systematic analysis of tumor cell content and tumor area, we recommend selecting patient high-grade serous ovarian cancer samples that display a tumor cell content ≥30% and a tumor area ≥0.5 cm2 (based on their hematoxylin and eosin) for HRD testing to allow for optimal chances of a successful analysis and conclusive results. Considering histologic and sample conditions, success rates of up to 98% can be achieved. Our comprehensive evaluation contributes to further standardization of recommendations on HRD testing in ovarian cancer, which will have a large impact on personalized therapeutic strategies in this highly aggressive tumor type.
Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Mutación , Recombinación Homóloga , Proteína BRCA2/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inestabilidad GenómicaRESUMEN
This corrects the article DOI: 10.1038/nature22964.
RESUMEN
RATIONALE: Homologous recombination deficiency (HRD), defined as BRCA1/2 mutation (BRCAmut) or high genomic instability, is used to identify ovarian cancer (OC) patients most likely to benefit from PARP inhibitors. While these tests are useful, they are imperfect. Another approach is to measure the capacity of tumor cells to form RAD51 foci in the presence of DNA damage using an immunofluorescence assay (IF). We aimed to describe for the first time this assay in OC and correlate it to platinum response and BRCAmut. METHODS: Tumor samples were prospectively collected from the randomized CHIVA trial of neoadjuvant platinum +/- nintedanib. IF for RAD51, GMN and gH2AX was performed on FFPE blocks. Tumors were considered RAD51-low if ≤10% of GMN-positive tumor cells had ≥5 RAD51 foci. BRCAmut were identified by NGS. RESULTS: 155 samples were available. RAD51 assay was contributive for 92% of samples and NGS available for 77%. gH2AX foci confirmed the presence of significant basal DNA damage. 54% of samples were considered HRD by RAD51 and presented higher overall response rates to neoadjuvant platinum (P = 0.04) and longer progression-free survival (P = 0.02). In addition, 67% of BRCAmut were HRD by RAD51. Among BRCAmut, RAD51-high tumors seem to harbor poorer response to chemotherapy (P = 0.02). CONCLUSIONS: We evaluated a functional assay of HR competency. OC demonstrate high levels of DNA damage, yet 54% fail to form RAD51 foci. These RAD51-low OC tend to be more sensitive to neoadjuvant platinum. The RAD51 assay also identified a subset of RAD51-high BRCAmut tumors with unexpected poor platinum response.
Asunto(s)
Neoplasias Ováricas , Platino (Metal) , Humanos , Femenino , Platino (Metal)/uso terapéutico , Recombinación Homóloga , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Daño del ADN , Proteína BRCA1/genética , Recombinasa Rad51/genéticaRESUMEN
Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.
Asunto(s)
Adenosilmetionina Descarboxilasa/metabolismo , Complejos Multiproteicos/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosilmetionina Descarboxilasa/inmunología , Animales , Proliferación Celular , Activación Enzimática , Everolimus/uso terapéutico , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Metabolómica , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Estabilidad Proteica , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidoresRESUMEN
BACKGROUND: Schlafen 11 (SLFN11) has been linked with response to DNA-damaging agents (DDA) and PARP inhibitors. An in-depth understanding of several aspects of its role as a biomarker in cancer is missing, as is a comprehensive analysis of the clinical significance of SLFN11 as a predictive biomarker to DDA and/or DNA damage-response inhibitor (DDRi) therapies. METHODS: We used a multidisciplinary effort combining specific immunohistochemistry, pharmacology tests, anticancer combination therapies and mechanistic studies to assess SLFN11 as a potential biomarker for stratification of patients treated with several DDA and/or DDRi in the preclinical and clinical setting. RESULTS: SLFN11 protein associated with both preclinical and patient treatment response to DDA, but not to non-DDA or DDRi therapies, such as WEE1 inhibitor or olaparib in breast cancer. SLFN11-low/absent cancers were identified across different tumour types tested. Combinations of DDA with DDRi targeting the replication-stress response (ATR, CHK1 and WEE1) could re-sensitise SLFN11-absent/low cancer models to the DDA treatment and were effective in upper gastrointestinal and genitourinary malignancies. CONCLUSION: SLFN11 informs on the standard of care chemotherapy based on DDA and the effect of selected combinations with ATR, WEE1 or CHK1 inhibitor in a wide range of cancer types and models.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Daño del ADN , Resistencia a Antineoplásicos , Proteínas Nucleares/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Nivel de Atención , Animales , Neoplasias de la Mama/patología , Femenino , Estudios de Seguimiento , Humanos , Ratones , Proteínas Nucleares/genética , Isoformas de Proteínas , Estudios Retrospectivos , Análisis de Matrices Tisulares , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS: Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS: Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS: PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Resistencia a Antineoplásicos , Furanos/farmacología , Cetonas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
HER2 (ERBB2) amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in EGFR-mutant lung cancer. Interestingly, the lack of HER2i efficacy occurs despite sufficient intracellular signaling shutdown following HER2i treatment. Exploring possible intrinsic causes for this lack of response, we uncovered remarkably depressed levels of NOXA, an endogenous inhibitor of the antiapoptotic MCL-1, in HER2-amplified breast cancer. Upon investigation of the mechanism leading to low NOXA, we identified a micro-RNA encoded in an intron of HER2, termed miR-4728, that targets the mRNA of the Estrogen Receptor α (ESR1). Reduced ESR1 expression in turn prevents ERα-mediated transcription of NOXA, mitigating apoptosis following treatment with the HER2i lapatinib. Importantly, resistance can be overcome with pharmacological inhibition of MCL-1. More generally, while many cancers like EGFR-mutant lung cancer are driven by activated kinases that when drugged lead to robust monotherapeutic responses, we demonstrate that the efficacy of targeted therapies directed against oncogenes active through focal amplification may be mitigated by coamplified genes.
Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Amplificación de Genes/genética , MicroARNs/genética , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , MicroARNs/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismoRESUMEN
BACKGROUND: Treatment options for triple-negative breast cancer remain limited. Activation of the PI3K pathway via loss of PTEN and/or INPP4B is common. Buparlisib is an orally bioavailable, pan-class I PI3K inhibitor. We evaluated the safety and efficacy of buparlisib in patients with metastatic triple-negative breast cancer. METHODS: This was a single-arm phase 2 study enrolling patients with triple-negative metastatic breast cancer. Patients were treated with buparlisib at a starting dose of 100 mg daily. The primary endpoint was clinical benefit, defined as confirmed complete response (CR), partial response (PR), or stable disease (SD) for ≥ 4 months, per RECIST 1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and toxicity. A subset of patients underwent pre- and on-treatment tumor tissue biopsies for correlative studies. RESULTS: Fifty patients were enrolled. Median number of cycles was 2 (range 1-10). The clinical benefit rate was 12% (6 patients, all SD ≥ 4 months). Median PFS was 1.8 months (95% confidence interval [CI] 1.6-2.3). Median OS was 11.2 months (95% CI 6.2-25). The most frequent adverse events were fatigue (58% all grades, 8% grade 3), nausea (34% all grades, none grade 3), hyperglycemia (34% all grades, 4% grade 3), and anorexia (30% all grades, 2% grade 3). Eighteen percent of patients experienced depression (12% grade 1, 6% grade 2) and anxiety (10% grade 1, 8% grade 2). Alterations in PIK3CA/AKT1/PTEN were present in 6/27 patients with available targeted DNA sequencing (MSK-IMPACT), 3 of whom achieved SD as best overall response though none with clinical benefit ≥ 4 months. Of five patients with paired baseline and on-treatment biopsies, reverse phase protein arrays (RPPA) analysis demonstrated reduction of S6 phosphorylation in 2 of 3 patients who achieved SD, and in none of the patients with progressive disease. CONCLUSIONS: Buparlisib was associated with prolonged SD in a very small subset of patients with triple-negative breast cancer; however, no confirmed objective responses were observed. Downmodulation of key nodes in the PI3K pathway was observed in patients who achieved SD. PI3K pathway inhibition alone may be insufficient as a therapeutic strategy for triple-negative breast cancer. TRIAL REGISTRATION: NCT01790932 . Registered on 13 February 2013; NCT01629615 . Registered on 27 June 2012.
Asunto(s)
Aminopiridinas/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Morfolinas/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adulto , Anciano , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Progresión de la Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Metástasis de la Neoplasia , Seguridad del Paciente , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteómica , Criterios de Evaluación de Respuesta en Tumores Sólidos , Tasa de Supervivencia , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Patterns of somatic mutations in cancer genes provide information about their functional role in tumourigenesis, and thus indicate their potential for therapeutic exploitation. Yet, the classical distinction between oncogene and tumour suppressor may not always apply. For instance, TP53 has been simultaneously associated with tumour suppressing and promoting activities. Here, we uncover a similar phenomenon for GATA3, a frequently mutated, yet poorly understood, breast cancer gene. We identify two functional classes of frameshift mutations that are associated with distinct expression profiles in tumours, differential disease-free patient survival and gain- and loss-of-function activities in a cell line model. Furthermore, we find an estrogen receptor-independent synthetic lethal interaction between a GATA3 frameshift mutant with an extended C-terminus and the histone methyltransferases G9A and GLP, indicating perturbed epigenetic regulation. Our findings reveal important insights into mutant GATA3 function and breast cancer, provide the first potential therapeutic strategy and suggest that dual tumour suppressive and oncogenic activities are more widespread than previously appreciated.
Asunto(s)
Neoplasias de la Mama/genética , Epigénesis Genética , Factor de Transcripción GATA3/genética , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Mutación del Sistema de Lectura , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéuticoRESUMEN
Some mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their 'basal-like' transcriptional profiles. We therefore hypothesized that targeting TNBC cells on a systems level by exploiting the transcriptional cell state might be a viable strategy to find novel therapies for this highly aggressive disease. We performed a large-scale chemical genetic screen and identified a group of compounds related to the drug PKC412 (midostaurin). PKC412 induced apoptosis in a subset of TNBC cells enriched for the basal-like subtype and inhibited tumor growth in vivo. We employed a multi-omics approach and computational modeling to address the mechanism of action and identified spleen tyrosine kinase (SYK) as a novel and unexpected target in TNBC. Quantitative phosphoproteomics revealed that SYK inhibition abrogates signaling to STAT3, explaining the selectivity for basal-like breast cancer cells. This non-oncogene addiction suggests that chemical SYK inhibition may be beneficial for a specific subset of TNBC patients and demonstrates that targeting cell states could be a viable strategy to discover novel treatment strategies.
Asunto(s)
Antineoplásicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Terapia Molecular Dirigida , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Estaurosporina/análogos & derivados , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Femenino , Perfilación de la Expresión Génica , Humanos , Ratones , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos , Análisis de Secuencia de ARN , Transducción de Señal , Estaurosporina/farmacología , Quinasa Syk , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.
Asunto(s)
Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/biosíntesis , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/biosíntesis , Animales , Humanos , Masculino , Ratones , Mutación/genética , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Supresoras de Tumor/genéticaRESUMEN
Clinical benefits from trastuzumab and other anti-HER2 therapies in patients with HER2 amplified breast cancer remain limited by primary or acquired resistance. To identify potential mechanisms of resistance, we established trastuzumab-resistant HER2 amplified breast cancer cells by chronic exposure to trastuzumab treatment. Genomewide copy-number variation analyses of the resistant cells compared with parental cells revealed a focal amplification of genomic DNA containing the cyclin E gene. In a cohort of 34 HER2(+) patients treated with trastuzumab-based therapy, we found that cyclin E amplification/overexpression was associated with a worse clinical benefit (33.3% compared with 87.5%, P < 0.02) and a lower progression-free survival (6 mo vs. 14 mo, P < 0.002) compared with nonoverexpressing cyclin E tumors. To dissect the potential role of cyclin E in trastuzumab resistance, we studied the effects of cyclin E overexpression and cyclin E suppression. Cyclin E overexpression resulted in resistance to trastuzumab both in vitro and in vivo. Inhibition of cyclin E activity in cyclin E-amplified trastuzumab resistant clones, either by knockdown of cyclin E expression or treatment with cyclin-dependent kinase 2 (CDK2) inhibitors, led to a dramatic decrease in proliferation and enhanced apoptosis. In vivo, CDK2 inhibition significantly reduced tumor growth of trastuzumab-resistant xenografts. Our findings point to a causative role for cyclin E overexpression and the consequent increase in CDK2 activity in trastuzumab resistance and suggest that treatment with CDK2 inhibitors may be a valid strategy in patients with breast tumors with HER2 and cyclin E coamplification/overexpression.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclina E/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Amplificación de Genes/efectos de los fármacos , Proteínas Oncogénicas/genética , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , TrastuzumabRESUMEN
Homologous recombination proficiency in patients with breast cancer despite germline PALB2/RAD51C pathogenic variants.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Recombinación Homóloga/genética , Células Germinativas/patologíaRESUMEN
BACKGROUND: Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS: Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS: AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS: Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.
Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratones , Proteína BRCA1/genética , Proteína BRCA2/genética , Femenino , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Indoles/uso terapéutico , Indoles/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genéticaRESUMEN
Importance: RAD51C and RAD51D are involved in DNA repair by homologous recombination. Germline pathogenic variants (PVs) in these genes are associated with an increased risk of ovarian and breast cancer. Understanding the homologous recombination deficiency (HRD) status of tumors from patients with germline PVs in RAD51C/D could guide therapeutic decision-making and improve survival. Objective: To characterize the clinical and tumor characteristics of germline RAD51C/D PV carriers, including the evaluation of HRD status. Design, Setting, and Participants: This retrospective cohort study included 91 index patients plus 90 relatives carrying germline RAD51C/D PV (n = 181) in Spanish hospitals from January 1, 2014, to December 31, 2021. Genomic and functional HRD biomarkers were assessed in untreated breast and ovarian tumor samples (n = 45) from June 2022 to February 2023. Main Outcomes and Measures: Clinical and pathologic characteristics were assessed using descriptive statistics. Genomic HRD by genomic instability scores, functional HRD by RAD51, and gene-specific loss of heterozygosity were analyzed. Associations between HRD status and tumor subtype, age at diagnosis, and gene-specific loss of heterozygosity in RAD51C/D were investigated using logistic regression or the t test. Results: A total of 9507 index patients were reviewed, and 91 patients (1.0%) were found to carry a PV in RAD51C/D; 90 family members with a germline PV in RAD51C/D were also included. A total of 157 of carriers (86.7%) were women and 181 (55.8%) had received a diagnosis of cancer, mainly breast cancer or ovarian cancer. The most prevalent PVs were c.1026+5_1026+7del (11 of 56 [19.6%]) and c.709C>T (9 of 56 [16.1%]) in RAD51C and c.694C>T (20 of 35 [57.1%]) in RAD51D. In untreated breast cancer and ovarian cancer, the prevalence of functional and genomic HRD was 55.2% (16 of 29) and 61.1% (11 of 18) for RAD51C, respectively, and 66.7% (6 of 9) and 90.0% (9 of 10) for RAD51D. The concordance between HRD biomarkers was 91%. Tumors with the same PV displayed contrasting HRD status, and age at diagnosis did not correlate with the occurrence of HRD. All breast cancers retaining the wild-type allele were estrogen receptor positive and lacked HRD. Conclusions and Relevance: In this cohort study of germline RAD51C/D breast cancer and ovarian cancer, less than 70% of tumors displayed functional HRD, and half of those that did not display HRD were explained by retention of the wild-type allele, which was more frequent among estrogen receptor-positive breast cancers. Understanding which tumors are associated with RAD51C/D and HRD is key to identify patients who can benefit from targeted therapies, such as PARP (poly [adenosine diphosphate-ribose] polymerase) inhibitors.
Asunto(s)
Neoplasias de la Mama , Mutación de Línea Germinal , Recombinación Homóloga , Neoplasias Ováricas , Recombinasa Rad51 , Adulto , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/epidemiología , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Recombinación Homóloga/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/epidemiología , Prevalencia , Estudios Retrospectivos , España/epidemiología , Recombinasa Rad51/genéticaRESUMEN
Patritumab deruxtecan (HER3-DXd) exhibits promising efficacy in breast cancer, with its activity not directly correlated to baseline ERBB3/HER3 levels. This research investigates the genetic factors affecting HER3-DXd's response in women with early-stage hormone receptor-positive and HER2-negative (HR+/HER2-) breast cancer. In the SOLTI-1805 TOT-HER3 trial, a single HER3-DXd dose was administered to 98 patients across two parts: 78 patients received 6.4 mg/kg (Part A), and 44 received a lower 5.6 mg/kg dose (Part B). The CelTIL score, measuring tumor cellularity and infiltrating lymphocytes from baseline to day 21, was used to assess drug activity. Part A demonstrated increased CelTIL score after one dose of HER3-DXd. Here we report CelTIL score and safety for Part B. In addition, the exploratory analyses of part A involve a comprehensive study of gene expression, somatic mutations, copy-number segments, and DNA-based subtypes, while Part B focuses on validating gene expression. RNA analyses show significant correlations between CelTIL responses, high proliferation genes (e.g., CCNE1, MKI67), and low expression of luminal genes (e.g., NAT1, SLC39A6). DNA findings indicate that CelTIL response is significantly associated with TP53 mutations, proliferation, non-luminal signatures, and a distinct DNA-based subtype (DNADX cluster-3). Critically, low HER2DX ERBB2 mRNA, correlates with increased HER3-DXd activity, which is validated through in vivo patient-derived xenograft models. This study proposes chemosensitivity determinants, DNA-based subtype classification, and low ERBB2 expression as potential markers for HER3-DXd activity in HER2-negative breast cancer.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Persona de Mediana Edad , Anticuerpos Monoclonales/uso terapéutico , Adulto , Anciano , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Ratones , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Resultado del Tratamiento , Trastuzumab , Camptotecina/análogos & derivados , InmunoconjugadosRESUMEN
Resistance to therapy remains a major obstacle in cancer management. Although treatment with hormone and CDK4/6 inhibitors is successful in luminal breast cancer, resistance to these treatments is frequent, highlighting the need for novel therapeutic strategies to delay disease progression and improve patient survival. Here, we assessed the mechanisms of acquired resistance using T47D and MCF-7 tamoxifen- and palbociclib-resistant cell-line variants in culture and as xenografts, and patient-derived cells (PDCs) obtained from sensitive or resistant patient-derived xenografts (PDXs). In these models, we analyzed the effect of specific kinase inhibitors on survival, signaling and cellular aggressiveness. Our results revealed that mTOR inhibition is more effective than PI3K inhibition in overcoming resistance, irrespective of PIK3CA mutation status, by decreasing cell proliferation and tumor growth, as well as reducing cell migration and stemness. Moreover, a combination of mTOR and CDK4/6 inhibitors may prevent pathway reactivation downstream of PI3K, interfering with the survival of resistant cells and consequent tumor escape. In conclusion, we highlight the benefits of incorporating mTOR inhibitors into the current therapy in ER + breast cancer. This alternative therapeutic strategy not only enhances the antitumor response but may also delay the emergence of resistance and tumor recurrence.