Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541196

RESUMEN

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Asunto(s)
Tránsito Gastrointestinal , Canales Iónicos , Mecanotransducción Celular , Animales , Humanos , Ratones , Digestión , Canales Iónicos/metabolismo , Neuronas/metabolismo
2.
Nature ; 609(7927): 569-574, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045288

RESUMEN

Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.


Asunto(s)
Tejido Adiposo , Células Receptoras Sensoriales , Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Tejido Adiposo Beige/inervación , Tejido Adiposo Beige/metabolismo , Animales , Axones , Metabolismo Energético , Ganglios Espinales/fisiología , Homeostasis , Hormonas/metabolismo , Ratones , Especificidad de Órganos , Células Receptoras Sensoriales/fisiología , Grasa Subcutánea/inervación , Grasa Subcutánea/metabolismo , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Termogénesis/genética
3.
Cytometry A ; 97(5): 504-514, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31603601

RESUMEN

The polymodal channel TRPV4 has been shown to regulate development and maintenance of cartilage. Here we investigate whether TRPV4 activity regulates the early deposition and structure of collagen matrix in the femoral head cartilage by comparing the 3D morphology and the sub-micrometer organization of the collagen matrix between wild type and Trpv4 -/- mice pups four to five days old. Two-photon microscopy can be used to conduct label-free imaging of cartilage, as collagen generates a second harmonic signal (second harmonic generation [SHG]) under pulsed infrared excitation. In one set of measurements, we use circularly polarized laser light to reconstruct the 3D morphology of the femoral head cartilage and to measure the tissue thickness. Second, by rotating the direction of the linearly polarized light and using polarized SHG detection, we investigate the sub-micrometer orientation of collagen fibers in the cartilage. At this developmental stage, we cannot detect statistically significant differences between the two mice strains, although a tendency toward a more random orientation of collagen fibers and a higher thickness of the whole cartilage seems to characterize the Trpv4 -/- mice. We discuss possible reasons for these observations. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Microscopía , Microscopía de Generación del Segundo Armónico , Animales , Cartílago/metabolismo , Colágeno/metabolismo , Ratones , Canales Catiónicos TRPV/genética
4.
Neuron ; 111(16): 2488-2501.e8, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37321223

RESUMEN

Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.


Asunto(s)
Canales Iónicos , Mecanotransducción Celular , Ratones , Animales , Mecanotransducción Celular/fisiología , Canales Iónicos/metabolismo , Células Receptoras Sensoriales/fisiología , Compuestos de Piridinio/metabolismo
5.
Science ; 381(6660): 906-910, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616369

RESUMEN

Despite the potential importance of genital mechanosensation for sexual reproduction, little is known about how perineal touch influences mating. We explored how mechanosensation affords exquisite awareness of the genitals and controls reproduction in mice and humans. Using genetic strategies and in vivo functional imaging, we demonstrated that the mechanosensitive ion channel PIEZO2 (piezo-type mechanosensitive ion channel component 2) is necessary for behavioral sensitivity to perineal touch. PIEZO2 function is needed for triggering a touch-evoked erection reflex and successful mating in both male and female mice. Humans with complete loss of PIEZO2 function have genital hyposensitivity and experience no direct pleasure from gentle touch or vibration. Together, our results help explain how perineal mechanoreceptors detect the gentlest of stimuli and trigger physiologically important sexual responses, thus providing a platform for exploring the sensory basis of sexual pleasure and its relationship to affective touch.


Asunto(s)
Canales Iónicos , Mecanorreceptores , Erección Peniana , Conducta Sexual , Percepción del Tacto , Animales , Femenino , Humanos , Masculino , Ratones , Canales Iónicos/genética , Canales Iónicos/fisiología , Mecanorreceptores/fisiología
6.
Reproduction ; 144(1): 101-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22580372

RESUMEN

Progesterone is a physiological agonist for mammalian sperm, modulating its flagellar movement and facilitating the acrosome reaction. To study the initial action of progesterone, we developed a caged analog with a photosensitive group: nitrophenylethanediol, at position 20. Using this compound combined with stroboscopic illumination, we performed Ca(2)(+) imaging of human spermatozoa and analyzed the effects of progesterone on the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)) of beating flagella for the first time. We observed a transient [Ca(2)(+)](i) increase in the head and the flagellum upon photolysis of the caged progesterone and an increase in flagellar curvature. Detailed kinetic analysis revealed that progesterone elicits an increase in the [Ca(2)(+)](i) immediately in the flagellum (mid-piece and principal piece), thereafter in the head with a short time lag. This observation is different from the progesterone-induced Ca(2)(+) mobilization in mouse spermatozoa, where the Ca(2)(+) rise initiates at the base of the sperm head. Our finding is mostly consistent with the recent discovery that progesterone activates CatSper channels in human spermatozoa, but not in mouse spermatozoa.


Asunto(s)
Calcio/análisis , Progesterona/análogos & derivados , Progesterona/farmacología , Cola del Espermatozoide/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Canales de Calcio/efectos de los fármacos , Colorantes Fluorescentes , Humanos , Masculino , Nitrobencenos/química , Fotólisis , Progesterona/química , Espectrometría de Fluorescencia , Cabeza del Espermatozoide/química , Cabeza del Espermatozoide/efectos de los fármacos , Cola del Espermatozoide/química , Cola del Espermatozoide/fisiología , Espermatozoides/química , Espermatozoides/fisiología
7.
Nat Commun ; 9(1): 1096, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545531

RESUMEN

Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.


Asunto(s)
Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Proteínas de Pez Cebra/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Evolución Molecular , Humanos , Canales Iónicos/genética , Ratones , Mutación Missense , Técnicas de Placa-Clamp , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA